IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i7p2628-2639.html
   My bibliography  Save this article

Tests for zero-inflation and overdispersion: A new approach based on the stochastic convex order

Author

Listed:
  • Baíllo, A.
  • Berrendero, J.R.
  • Cárcamo, J.

Abstract

A new methodology to detect zero-inflation and overdispersion is proposed, based on a comparison of the expected sample extremes among convexly ordered distributions. The method is very flexible and includes tests for the proportion of structural zeros in zero-inflated models, tests to distinguish between two ordered parametric families and a new general test to detect overdispersion. The performance of the proposed tests is evaluated via some simulation studies. For the well-known fetal lamb data, the conclusion is that the zero-inflated Poisson model should be rejected against other more disperse models, but the negative binomial model cannot be rejected.

Suggested Citation

  • Baíllo, A. & Berrendero, J.R. & Cárcamo, J., 2009. "Tests for zero-inflation and overdispersion: A new approach based on the stochastic convex order," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2628-2639, May.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:7:p:2628-2639
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00582-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rigby, R.A. & Stasinopoulos, D.M. & Akantziliotou, C., 2008. "A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 381-393, December.
    2. Jansakul, N. & Hinde, J. P., 2002. "Score Tests for Zero-Inflated Poisson Models," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 75-96, July.
    3. Aban, Inmaculada B. & Cutter, Gary R. & Mavinga, Nsoki, 2009. "Inferences and power analysis concerning two negative binomial distributions with an application to MRI lesion counts data," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 820-833, January.
    4. D. Böhning & E. Dietz & P. Schlattmann & L. Mendonça & U. Kirchner, 1999. "The zero‐inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(2), pages 195-209.
    5. de la Cal, J. & Cárcamo, J., 2005. "Inequalities for expected extreme order statistics," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 219-231, July.
    6. Gupta, Pushpa L. & Gupta, Ramesh C. & Tripathi, Ram C., 1996. "Analysis of zero-adjusted count data," Computational Statistics & Data Analysis, Elsevier, vol. 23(2), pages 207-218, December.
    7. Martin Ridout & John Hinde & Clarice G. B. Demétrio, 2001. "A Score Test for Testing a Zero‐Inflated Poisson Regression Model Against Zero‐Inflated Negative Binomial Alternatives," Biometrics, The International Biometric Society, vol. 57(1), pages 219-223, March.
    8. Xie, M. & He, B. & Goh, T. N., 2001. "Zero-inflated Poisson model in statistical process control," Computational Statistics & Data Analysis, Elsevier, vol. 38(2), pages 191-201, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yin & Tian, Guo-Liang, 2015. "Type I multivariate zero-inflated Poisson distribution with applications," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 200-222.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baksh, M. Fazil & Böhning, Dankmar & Lerdsuwansri, Rattana, 2011. "An extension of an over-dispersion test for count data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 466-474, January.
    2. Abbas Moghimbeigi & Mohammed Reza Eshraghian & Kazem Mohammad & Brian Mcardle, 2008. "Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1193-1202.
    3. E. Bahrami Samani & Y. Amirian & M. Ganjali, 2012. "Likelihood estimation for longitudinal zero-inflated power series regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(9), pages 1965-1974, May.
    4. Bedrick, Edward J. & Hossain, Anwar, 2013. "Conditional tests for homogeneity of zero-inflated Poisson and Poisson-hurdle distributions," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 99-106.
    5. Moghimbeigi, Abbas & Eshraghian, Mohammad Reza & Mohammad, Kazem & McArdle, Brian, 2009. "A score test for zero-inflation in multilevel count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1239-1248, February.
    6. Yip, Karen C.H. & Yau, Kelvin K.W., 2005. "On modeling claim frequency data in general insurance with extra zeros," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 153-163, April.
    7. Liu, Juxin & Ma, Yanyuan & Johnstone, Jill, 2020. "A goodness-of-fit test for zero-inflated Poisson mixed effects models in tree abundance studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    8. Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine, 2015. "Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1148-1165, June.
    9. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    10. Feng-Chang Xie & Jin-Guan Lin & Bo-Cheng Wei, 2014. "Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1383-1392, June.
    11. Olivier Thas & J. C. W. Rayner, 2005. "Smooth Tests for the Zero-Inflated Poisson Distribution," Biometrics, The International Biometric Society, vol. 61(3), pages 808-815, September.
    12. Jussiane Nader Gonçalves & Wagner Barreto-Souza, 2020. "Flexible regression models for counts with high-inflation of zeros," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 71-95, April.
    13. Lim, Hwa Kyung & Song, Juwon & Jung, Byoung Cheol, 2013. "Score tests for zero-inflation and overdispersion in two-level count data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 67-82.
    14. Wei-Wen Hsu & David Todem & Kyungmann Kim, 2015. "Adjusted Supremum Score-Type Statistics for Evaluating Non-Standard Hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 746-759, September.
    15. K. F. Lam & Hongqi Xue & Yin Bun Cheung, 2006. "Semiparametric Analysis of Zero-Inflated Count Data," Biometrics, The International Biometric Society, vol. 62(4), pages 996-1003, December.
    16. Garay, Aldo M. & Hashimoto, Elizabeth M. & Ortega, Edwin M.M. & Lachos, Víctor H., 2011. "On estimation and influence diagnostics for zero-inflated negative binomial regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1304-1318, March.
    17. Habtamu K. Benecha & Brian Neelon & Kimon Divaris & John S. Preisser, 2017. "Marginalized mixture models for count data from multiple source populations," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-17, December.
    18. Hadi Saboori & Mahdi Doostparast, 2024. "Control Charts Based on Zero to k Inflated Power Series Regression Models and Their Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 442-476, November.
    19. Xie, Feng-Chang & Wei, Bo-Cheng & Lin, Jin-Guan, 2009. "Score tests for zero-inflated generalized Poisson mixed regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3478-3489, July.
    20. T. Martin Lukusa & Shen-Ming Lee & Chin-Shang Li, 2016. "Semiparametric estimation of a zero-inflated Poisson regression model with missing covariates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(4), pages 457-483, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:7:p:2628-2639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.