IDEAS home Printed from
   My bibliography  Save this article

Perfect simulation for marked point processes


  • van Lieshout, M.N.M.
  • Stoica, R.S.


No abstract is available for this item.

Suggested Citation

  • van Lieshout, M.N.M. & Stoica, R.S., 2006. "Perfect simulation for marked point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 679-698, November.
  • Handle: RePEc:eee:csdana:v:51:y:2006:i:2:p:679-698

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. A. Mira & J. Møller & G. O. Roberts, 2001. "Perfect slice samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 593-606.
    2. Kendall, Wilfrid S. & Montana, Giovanni, 2002. "Small sets and Markov transition densities," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 177-194, June.
    3. Ferrari, Pablo A. & Fernández, Roberto & Garcia, Nancy L., 2002. "Perfect simulation for interacting point processes, loss networks and Ising models," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 63-88, November.
    4. J. Møller, 1999. "Perfect simulation of conditionally specified models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 251-264.
    5. M. N. M. van Lieshout & R. S. Stoica, 2003. "The Candy model: properties and inference," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(2), pages 177-206.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2006:i:2:p:679-698. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.