IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v99y2002i2p177-194.html
   My bibliography  Save this article

Small sets and Markov transition densities

Author

Listed:
  • Kendall, Wilfrid S.
  • Montana, Giovanni

Abstract

The theory of general state-space Markov chains can be strongly related to the case of discrete state-space by use of the notion of small sets and associated minorization conditions. The general theory shows that small sets exist for all Markov chains on state-spaces with countably generated [sigma]-algebras, though the minorization provided by the theory concerns small sets of order n and n-step transition kernels for some unspecified n. Partly motivated by the growing importance of small sets for Markov chain Monte Carlo and Coupling from the Past, we show that in general there need be no small sets of order n=1 even if the kernel is assumed to have a density function (though of course one can take n=1 if the kernel density is continuous). However, n=2 will suffice for kernels with densities (integral kernels), and in fact small sets of order 2 abound in the technical sense that the 2-step kernel density can be expressed as a countable sum of non-negative separable summands based on small sets. This can be exploited to produce a representation using a latent discrete Markov chain; indeed one might say, inside every Markov chain with measurable transition density there is a discrete state-space Markov chain struggling to escape. We conclude by discussing complements to these results, including their relevance to Harris-recurrent Markov chains and we relate the counterexample to Turán problems for bipartite graphs.

Suggested Citation

  • Kendall, Wilfrid S. & Montana, Giovanni, 2002. "Small sets and Markov transition densities," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 177-194, June.
  • Handle: RePEc:eee:spapps:v:99:y:2002:i:2:p:177-194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(02)00090-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Afanasyev, V. I., 2001. "On the maximum of a subcritical branching process in a random environment," Stochastic Processes and their Applications, Elsevier, pages 87-107.
    2. Shi, Zhan, 1998. "A local time curiosity in random environment," Stochastic Processes and their Applications, Elsevier, pages 231-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Lieshout, M.N.M. & Stoica, R.S., 2006. "Perfect simulation for marked point processes," Computational Statistics & Data Analysis, Elsevier, pages 679-698.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:99:y:2002:i:2:p:177-194. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.