Classification of "cured" individuals in survival analysis: the mixture approach to the diagnostic-prognostic problem
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Ghitany, M. E. & Maller, R. A. & Zhou, S., 1994. "Exponential Mixture Models with Long-Term Survivors and Covariates," Journal of Multivariate Analysis, Elsevier, vol. 49(2), pages 218-241, May.
- Alessandra Nardi & Michael Schemper, 1999. "New Residuals for Cox Regression and Their Application to Outlier Screening," Biometrics, The International Biometric Society, vol. 55(2), pages 523-529, June.
- Ming‐Hui Chen & Joseph G. Ibrahim, 2001. "Maximum Likelihood Methods for Cure Rate Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 57(1), pages 43-52, March.
- Joseph G. Ibrahim & Ming-Hui Chen & Debajyoti Sinha, 2001. "Bayesian Semiparametric Models for Survival Data with a Cure Fraction," Biometrics, The International Biometric Society, vol. 57(2), pages 383-388, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bohning, Dankmar & Seidel, Wilfried, 2003. "Editorial: recent developments in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 349-357, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- N. Balakrishnan & M. V. Koutras & F. S. Milienos & S. Pal, 2016. "Piecewise Linear Approximations for Cure Rate Models and Associated Inferential Issues," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 937-966, December.
- Carvalho Lopes, Celia Mendes & Bolfarine, Heleno, 2012. "Random effects in promotion time cure rate models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 75-87, January.
- Austin Menger & Md. Tuhin Sheikh & Ming-Hui Chen, 2024. "Bayesian Modeling of Survival Data in the Presence of Competing Risks with Cure Fractions and Masked Causes," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 199-227, November.
- Nuriye Sancar & Deniz Inan, 2018. "A novel method as a diagnostic tool for the detection of influential observations in the Cox proportional hazards model," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(2), pages 1253-1266, December.
- Congdon, Peter, 2008. "A bivariate frailty model for events with a permanent survivor fraction and non-monotonic hazards; with an application to age at first maternity," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4346-4356, May.
- Lopez-Cheda , Ana & Cao, Ricardo & Jacome, Maria Amalia & Van Keilegom, Ingrid, 2015. "Nonparametric incidence and latency estimation in mixture cure models," LIDAM Discussion Papers ISBA 2015014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Durga H. Kutal & Lianfen Qian, 2018. "A Non-Mixture Cure Model for Right-Censored Data with Fréchet Distribution," Stats, MDPI, vol. 1(1), pages 1-13, November.
- Varadan Sevilimedu & Shuangge Ma & Pamela Hartigan & Tassos C. Kyriakides, 2021. "An Application of the Cure Model to a Cardiovascular Clinical Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 402-430, December.
- Chen, Ming-Hui & Ibrahim, Joseph G. & Shao, Qi-Man, 2009. "Maximum likelihood inference for the Cox regression model with applications to missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2018-2030, October.
- Chun Pan & Bo Cai & Xuemei Sui, 2024. "A Bayesian proportional hazards mixture cure model for interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(2), pages 327-344, April.
- Portier, Francois & El Ghouch, Anouar & Van Keilegom, Ingrid, 2015. "Efficiency and Bootstrap in the Promotion Time Cure Model," LIDAM Discussion Papers ISBA 2015012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Barreto-Souza, Wagner, 2015. "Long-term survival models with overdispersed number of competing causes," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 51-63.
- Durdu Karasoy & Nuray Tuncer, 2015. "Outliers in Survival Analysis," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 3(2), pages 139-152, December.
- Amanda D’Andrea & Ricardo Rocha & Vera Tomazella & Francisco Louzada, 2018. "Negative Binomial Kumaraswamy-G Cure Rate Regression Model," JRFM, MDPI, vol. 11(1), pages 1-14, January.
- S. Eftekhari Mahabadi & M. Ganjali, 2012. "An index of local sensitivity to non-ignorability for parametric survival models with potential non-random missing covariate: an application to the SEER cancer registry data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2327-2348, July.
- Sean Yiu & Vernon T. Farewell & Brian D. M. Tom, 2017. "Exploring the existence of a stayer population with mover–stayer counting process models: application to joint damage in psoriatic arthritis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 669-690, August.
- Pons, O. & Lemdani, M., 2003. "Estimation and test in long-term survival mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 465-479, January.
- Francisco Louzada & M�rio de Castro & Vera Tomazella & Jhon F.B. Gonzales, 2014. "Modeling categorical covariates for lifetime data in the presence of cure fraction by Bayesian partition structures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 622-634, March.
- Gressani, Oswaldo & Lambert, Philippe, 2016. "Fast Bayesian inference in semi-parametric P-spline cure survival models using Laplace approximations," LIDAM Discussion Papers ISBA 2016041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:41:y:2003:i:3-4:p:515-529. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/csdana/v41y2003i3-4p515-529.html