IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v196y2024ics0167947324000446.html
   My bibliography  Save this article

Variable selection using data splitting and projection for principal fitted component models in high dimension

Author

Listed:
  • Baek, Seungchul
  • Hoyoung, Park
  • Park, Junyong

Abstract

Sufficient dimension reduction (SDR) is such an effective way to detect nonlinear relationship between response variable and covariates by reducing the dimensionality of covariates without information loss. The principal fitted component (PFC) model is a way to implement SDR using some class of basis functions, however the PFC model is not efficient when there are many irrelevant or noisy covariates. There have been a few studies on the selection of variables in the PFC model via penalized regression or sequential likelihood ratio test. A novel variable selection technique in the PFC model has been proposed by incorporating a recent development in multiple testing such as mirror statistics and random data splitting. It is highlighted how we construct a mirror statistic in the PFC model using the idea of projection of coefficients to the other space generated from data splitting. The proposed method is superior to some existing methods in terms of false discovery rate (FDR) control and applicability to high-dimensional cases. In particular, the proposed method outperforms other methods as the number of covariates tends to be getting larger, which would be appealing in high dimensional data analysis. Simulation studies and analyses of real data sets have been conducted to show the finite sample performance and the gain that it yields compared to existing methods.

Suggested Citation

  • Baek, Seungchul & Hoyoung, Park & Park, Junyong, 2024. "Variable selection using data splitting and projection for principal fitted component models in high dimension," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:csdana:v:196:y:2024:i:c:s0167947324000446
    DOI: 10.1016/j.csda.2024.107960
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000446
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:196:y:2024:i:c:s0167947324000446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.