IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v180y2023ics016794732200247x.html
   My bibliography  Save this article

Spatial heterogeneity automatic detection and estimation

Author

Listed:
  • Wang, Xin
  • Zhu, Zhengyuan
  • Zhang, Hao Helen

Abstract

Spatial regression is widely used for modeling the relationship between a dependent variable and explanatory covariates. Oftentimes, the linear relationships vary across space, such that some covariates have location-specific effects on the response. One fundamental question is how to detect the systematic variation in the model and identify which locations share common regression coefficients and which do not. Only a correct model structure can assure unbiased estimation of coefficients and valid inferences. A new procedure is proposed, called Spatial Heterogeneity Automatic Detection and Estimation (SHADE), for automatically and simultaneously subgrouping and estimating covariate effects for spatial regression models. The SHADE employs a class of spatially-weighted fusion type penalty on all pairs of observations, with location-specific weight constructed using spatial information, to cluster coefficients into subgroups. Under certain regularity conditions, the SHADE is shown to be able to identify the true model structure with probability approaching one and estimate regression coefficients consistently. An alternating direction method of multiplier algorithm (ADMM) is developed to compute the SHADE. In numerical studies, the empirical performance of the SHADE is demonstrated by using different choices of weights and comparing their accuracy. The results suggest that spatial information can enhance subgroup structure analysis in challenging situations when the spatial variation among regression coefficients is small or the number of repeated measures is small. Finally, the SHADE is applied to find the relationship between a natural resource survey and a land cover data layer to identify spatially interpretable groups.

Suggested Citation

  • Wang, Xin & Zhu, Zhengyuan & Zhang, Hao Helen, 2023. "Spatial heterogeneity automatic detection and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:csdana:v:180:y:2023:i:c:s016794732200247x
    DOI: 10.1016/j.csda.2022.107667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794732200247X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Furong Li & Huiyan Sang, 2019. "Spatial Homogeneity Pursuit of Regression Coefficients for Large Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1050-1062, July.
    2. Zhihua Ma & Yishu Xue & Guanyu Hu, 2020. "Heterogeneous regression models for clusters of spatial dependent data," Spatial Economic Analysis, Taylor & Francis Journals, vol. 15(4), pages 459-475, October.
    3. Andrea J. Cook & Diane R. Gold & Yi Li, 2007. "Spatial Cluster Detection for Censored Outcome Data," Biometrics, The International Biometric Society, vol. 63(2), pages 540-549, June.
    4. Junho Lee & Ying Sun & Howard H. Chang, 2020. "Spatial cluster detection of regression coefficients in a mixed‐effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 31(2), March.
    5. Xin Wang & Emily Berg & Zhengyuan Zhu & Dongchu Sun & Gabriel Demuth, 2018. "Small Area Estimation of Proportions with Constraint for National Resources Inventory Survey," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(4), pages 509-528, December.
    6. Jiajia Zhang & Andrew B. Lawson, 2011. "Bayesian parametric accelerated failure time spatial model and its application to prostate cancer," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(3), pages 591-603, November.
    7. Zhihua Ma & Yishu Xue & Guanyu Hu, 2019. "Heterogeneous Regression Models for Clusters of Spatial Dependent Data," Papers 1907.02212, arXiv.org, revised Apr 2020.
    8. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    9. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    10. Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
    11. Liu, Lili & Lin, Lu, 2019. "Subgroup analysis for heterogeneous additive partially linear models and its application to car sales data," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 239-259.
    12. Shujie Ma & Jian Huang, 2017. "A Concave Pairwise Fusion Approach to Subgroup Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 410-423, January.
    13. Im, Yunju & Tan, Aixin, 2021. "Bayesian subgroup analysis in regression using mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Wang & Xin Zhang, 2024. "Scanner: Simultaneously temporal trend and spatial cluster detection for spatial‐temporal data," Environmetrics, John Wiley & Sons, Ltd., vol. 35(5), August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Fangzheng & Tang, Yanlin & Zhu, Huichen & Zhu, Zhongyi, 2022. "Spatially clustered varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    2. Xin Wang & Xin Zhang, 2024. "Scanner: Simultaneously temporal trend and spatial cluster detection for spatial‐temporal data," Environmetrics, John Wiley & Sons, Ltd., vol. 35(5), August.
    3. Shao, Lihui & Wu, Jiaqi & Zhang, Weiping & Chen, Yu, 2024. "Integrated subgroup identification from multi-source data," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
    4. Cai, Tingting & Li, Jianbo & Zhou, Qin & Yin, Songlou & Zhang, Riquan, 2024. "Subgroup detection based on partially linear additive individualized model with missing data in response," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    5. Lijiang Geng & Guanyu Hu, 2022. "Bayesian spatial homogeneity pursuit for survival data with an application to the SEER respiratory cancer data," Biometrics, The International Biometric Society, vol. 78(2), pages 536-547, June.
    6. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    7. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    8. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    9. Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    10. Weirong Li & Wensheng Zhu, 2024. "Subgroup analysis with concave pairwise fusion penalty for ordinal response," Statistical Papers, Springer, vol. 65(6), pages 3327-3355, August.
    11. Setoudehtazangi, F. & Manouchehri, T. & Nematollahi, A.R. & Caporin, M., 2024. "Time series clustering based on latent volatility mixture modeling with applications in finance," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 543-564.
    12. Shan Yu & Aaron M. Kusmec & Li Wang & Dan Nettleton, 2023. "Fusion Learning of Functional Linear Regression with Application to Genotype-by-Environment Interaction Studies," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 401-422, September.
    13. Li-Pang Chen, 2022. "Network-Based Discriminant Analysis for Multiclassification," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 410-431, November.
    14. Liu, Lili & Lin, Lu, 2019. "Subgroup analysis for heterogeneous additive partially linear models and its application to car sales data," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 239-259.
    15. Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
    16. Luc Anselin & Pedro Amaral, 2024. "Endogenous spatial regimes," Journal of Geographical Systems, Springer, vol. 26(2), pages 209-234, April.
    17. Baosheng Liang & Peng Wu & Xingwei Tong & Yanping Qiu, 2020. "Regression and subgroup detection for heterogeneous samples," Computational Statistics, Springer, vol. 35(4), pages 1853-1878, December.
    18. Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
    19. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    20. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:180:y:2023:i:c:s016794732200247x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.