IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v120y2018icp58-69.html
   My bibliography  Save this article

Smoothed jackknife empirical likelihood for the one-sample difference of quantiles

Author

Listed:
  • Yang, Hanfang
  • Zhao, Yichuan

Abstract

The one-sample quantile difference measure, which includes the interquartile range (IQR) of a given distribution, plays an important role in statistical sciences and econometrics. A jackknife empirical likelihood (JEL) method for the quantile difference is proposed using a novel smoothed nonparametric estimating equation. The asymptotic chi-square distribution for the JEL is proved and an algorithm for computing confidence intervals (CIs) is presented. Extensive simulation results demonstrate that JEL CIs have better coverage probability and interval length compared with CIs generated by classical empirical likelihood and normal approximation methods in most cases. The US Census Bureau’s Current Population Survey data set is used to illustrate the trends in household income inequality.

Suggested Citation

  • Yang, Hanfang & Zhao, Yichuan, 2018. "Smoothed jackknife empirical likelihood for the one-sample difference of quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 58-69.
  • Handle: RePEc:eee:csdana:v:120:y:2018:i:c:p:58-69
    DOI: 10.1016/j.csda.2017.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317302359
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing, Bing-Yi & Yuan, Junqing & Zhou, Wang, 2009. "Jackknife Empirical Likelihood," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1224-1232.
    2. Chen, Jian & Peng, Liang & Zhao, Yichuan, 2009. "Empirical likelihood based confidence intervals for copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 137-151, January.
    3. Hanfang Yang & Yichuan Zhao, 2017. "Smoothed jackknife empirical likelihood for the difference of two quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 1059-1073, October.
    4. Wang Zhou & Bing-Yi Jing, 2003. "Adjusted empirical likelihood method for quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 689-703, December.
    5. Gong, Yun & Peng, Liang & Qi, Yongcheng, 2010. "Smoothed jackknife empirical likelihood method for ROC curve," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1520-1531, July.
    6. Liang Peng & Yongcheng Qi, 2010. "Smoothed jackknife empirical likelihood method for tail copulas," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 514-536, November.
    7. Bowen, A.J & Cowie, M & Zakay, N, 2001. "The performance of a remote wind–diesel power system," Renewable Energy, Elsevier, vol. 22(4), pages 429-445.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yichuan & Su, Yueju & Yang, Hanfang, 2020. "Jackknife empirical likelihood inference for the Pietra ratio," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    2. Yongcheng Qi, 2018. "Jackknife Empirical Likelihood Methods," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(2), pages 20-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanfang Yang & Yichuan Zhao, 2017. "Smoothed jackknife empirical likelihood for the difference of two quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 1059-1073, October.
    2. Zhao, Yichuan & Su, Yueju & Yang, Hanfang, 2020. "Jackknife empirical likelihood inference for the Pietra ratio," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    3. Yongcheng Qi, 2018. "Jackknife Empirical Likelihood Methods," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(2), pages 20-22, June.
    4. Zhang, Zhigang & Zhao, Yichuan, 2013. "Empirical likelihood for linear transformation models with interval-censored failure time data," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 398-409.
    5. Yang, Hanfang & Zhao, Yichuan, 2013. "Smoothed jackknife empirical likelihood inference for the difference of ROC curves," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 270-284.
    6. Yang, Hanfang & Zhao, Yichuan, 2015. "Smoothed jackknife empirical likelihood inference for ROC curves with missing data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 123-138.
    7. Zhao, Yichuan & Meng, Xueping & Yang, Hanfang, 2015. "Jackknife empirical likelihood inference for the mean absolute deviation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 92-101.
    8. Ai-Ai Liu & Han-Ying Liang, 2017. "Jackknife empirical likelihood of error variance in partially linear varying-coefficient errors-in-variables models," Statistical Papers, Springer, vol. 58(1), pages 95-122, March.
    9. Shan Luo & Gengsheng Qin, 2017. "New non-parametric inferences for low-income proportions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 599-626, June.
    10. Zang, Yangguang & Zhang, Sanguo & Li, Qizhai & Zhang, Qingzhao, 2016. "Jackknife empirical likelihood test for high-dimensional regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 302-316.
    11. Liu, Aiai & Hou, Yanxi & Peng, Liang, 2015. "Interval estimation for a measure of tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 294-305.
    12. Zhang, Xiuzhen & Lu, Zhiping & Wang, Yangye & Zhang, Riquan, 2020. "Adjusted jackknife empirical likelihood for stationary ARMA and ARFIMA models," Statistics & Probability Letters, Elsevier, vol. 165(C).
    13. Feng, Huijun & Peng, Liang, 2012. "Jackknife empirical likelihood tests for error distributions in regression models," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 63-75.
    14. Yang Wei & Zhouping Li & Yunqiu Dai, 2022. "Unified smoothed jackknife empirical likelihood tests for comparing income inequality indices," Statistical Papers, Springer, vol. 63(5), pages 1415-1475, October.
    15. Yukitoshi Matsushita & Taisuke Otsu, 2019. "Jackknife, small bandwidth and high-dimensional asymptotics," STICERD - Econometrics Paper Series 605, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    16. Hui-Ling Lin & Zhouping Li & Dongliang Wang & Yichuan Zhao, 2017. "Jackknife empirical likelihood for the error variance in linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 151-166, April.
    17. Yueheng An & Yichuan Zhao, 2018. "Jackknife empirical likelihood for the difference of two volumes under ROC surfaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 789-806, August.
    18. Zhouping Li & Jinfeng Xu & Wang Zhou, 2016. "On Nonsmooth Estimating Functions via Jackknife Empirical Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 49-69, March.
    19. Li, Minqiang & Peng, Liang & Qi, Yongcheng, 2011. "Reduce computation in profile empirical likelihood method," MPRA Paper 33744, University Library of Munich, Germany.
    20. Harold D. Chiang & Bing Yang Tan, 2020. "Empirical likelihood and uniform convergence rates for dyadic kernel density estimation," Papers 2010.08838, arXiv.org, revised May 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:120:y:2018:i:c:p:58-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.