IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v101y2016icp277-288.html

High resolution simulation of nonstationary Gaussian random fields

Author

Listed:
  • Kleiber, William

Abstract

Simulation of random fields is a fundamental requirement for many spatial analyses. For small spatial networks, simulations can be produced using direct manipulations of the covariance matrix. Larger high resolution simulations are most easily available for stationary processes, where algorithms such as circulant embedding can be used to simulate a process at millions of locations. We discuss an approach to simulating high resolution nonstationary Gaussian processes that relies on generating a stationary random field followed by a nonlinear deformation to produce a nonstationary field. A spatially varying variance coefficient accounts for local scale effects. The nonstationary covariance function is estimated nonparametrically, and the deformation function is then estimated in a variational framework. We illustrate the proposed approach on synthetic datasets, a challenging temperature dataset over the state of Colorado and a regional climate model over North America.

Suggested Citation

  • Kleiber, William, 2016. "High resolution simulation of nonstationary Gaussian random fields," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 277-288.
  • Handle: RePEc:eee:csdana:v:101:y:2016:i:c:p:277-288
    DOI: 10.1016/j.csda.2016.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316300482
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Perrin, Olivier & Senoussi, Rachid, 2000. "Reducing non-stationary random fields to stationarity and isotropy using a space deformation," Statistics & Probability Letters, Elsevier, vol. 48(1), pages 23-32, May.
    2. Peter Guttorp & Stephan R. Sain & Christopher K. Wikle & Grant B. Weller & Daniel S. Cooley & Stephan R. Sain, 2012. "An investigation of the pineapple express phenomenon via bivariate extreme value theory," Environmetrics, John Wiley & Sons, Ltd., vol. 23(5), pages 420-439, August.
    3. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
    4. Berrocal, Veronica J. & Raftery, Adrian E. & Gneiting, Tilmann & Steed, Richard C., 2010. "Probabilistic Weather Forecasting for Winter Road Maintenance," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 522-537.
    5. Perrin, Olivier & Senoussi, Rachid, 1999. "Reducing non-stationary stochastic processes to stationarity by a time deformation," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 393-397, July.
    6. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    7. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monbet, Valérie & Ailliot, Pierre, 2017. "Sparse vector Markov switching autoregressive models. Application to multivariate time series of temperature," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 40-51.
    2. Gangloff, Hugo & Courbot, Jean-Baptiste & Monfrini, Emmanuel & Collet, Christophe, 2021. "Unsupervised image segmentation with Gaussian Pairwise Markov Fields," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    3. M. R. Zolfaghari & M. Forghani, 2025. "Clustering-based analysis to address nonstationary spatial ground motion correlations using physics-based simulated data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(9), pages 10825-10841, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    2. Rachid Senoussi & Emilio Porcu, 2022. "Nonstationary space–time covariance functions induced by dynamical systems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 211-235, March.
    3. Ben Seiyon Lee & Murali Haran, 2025. "A class of models for large zero-inflated spatial data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(3), pages 746-768, September.
    4. Lim, Chae Young & Wu, Wei-Ying, 2022. "Conditions on which cokriging does not do better than kriging," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    5. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    6. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    7. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    8. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    9. Michel Harel & Jean-François Lenain & Joseph Ngatchou-Wandji, 2016. "Asymptotic behaviour of binned kernel density estimators for locally non-stationary random fields," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 296-321, June.
    10. Stefano Castruccio & Joseph Guinness, 2017. "An evolutionary spectrum approach to incorporate large-scale geographical descriptors on global processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 329-344, February.
    11. Nkwoma John Inekwe, 2016. "Financial uncertainty, risk aversion and monetary policy," Empirical Economics, Springer, vol. 51(3), pages 939-961, November.
    12. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    13. William Kleiber & Stephan Sain & Luke Madaus & Patrick Harr, 2023. "Stochastic tropical cyclone precipitation field generation," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    14. Korte-Stapff, Moritz & Karvonen, Toni & Moulines, Éric, 2025. "Smoothness estimation for Whittle–Matérn processes on closed Riemannian manifolds," Stochastic Processes and their Applications, Elsevier, vol. 189(C).
    15. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    16. Carson, Stuart & Mills Flemming, Joanna, 2014. "Seal encounters at sea: A contemporary spatial approach using R-INLA," Ecological Modelling, Elsevier, vol. 291(C), pages 175-181.
    17. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    18. Zilber, Daniel & Katzfuss, Matthias, 2021. "Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    19. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    20. Li, Yifan & Nolte, Ingmar & Vasios, Michalis & Voev, Valeri & Xu, Qi, 2022. "Weighted Least Squares Realized Covariation Estimation," Journal of Banking & Finance, Elsevier, vol. 137(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:101:y:2016:i:c:p:277-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.