IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v96y2017icp132-138.html
   My bibliography  Save this article

Exact solutions of space-time fractional EW and modified EW equations

Author

Listed:
  • Korkmaz, Alper

Abstract

The bright soliton solutions and singular solutions are constructed for the space-time fractional EW and the space-time fractional modified EW (MEW) equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform (FCT) and properties of modified Riemann–Liouville derivative. Then, various ansatz method are implemented to construct the solutions for both equations.

Suggested Citation

  • Korkmaz, Alper, 2017. "Exact solutions of space-time fractional EW and modified EW equations," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 132-138.
  • Handle: RePEc:eee:chsofr:v:96:y:2017:i:c:p:132-138
    DOI: 10.1016/j.chaos.2017.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917300218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jagdev Singh & Devendra Kumar & A. Kılıçman, 2013. "Homotopy Perturbation Method for Fractional Gas Dynamics Equation Using Sumudu Transform," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, February.
    2. Yusufoğlu, E. & Bekir, A. & Alp, M., 2008. "Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine–Cosine method," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1193-1197.
    3. Iyiola, O.S. & Tasbozan, O. & Kurt, A. & Çenesiz, Y., 2017. "On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 1-7.
    4. Seydi Battal Gazi Karakoç & Turabi Geyikli, 2012. "Numerical Solution of the Modified Equal Width Wave Equation," International Journal of Differential Equations, Hindawi, vol. 2012, pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Dazhi & Yu, Guozhu & Tian, Yan, 2020. "Recursive formulae for the analytic solution of the nonlinear spatial conformable fractional evolution equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Yusufoğlu, E. & Bekir, A., 2008. "The tanh and the sine–cosine methods for exact solutions of the MBBM and the Vakhnenko equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1126-1133.
    3. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    4. Thabet, Hayman & Kendre, Subhash, 2018. "Analytical solutions for conformable space-time fractional partial differential equations via fractional differential transform," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 238-245.
    5. GaziKarakoc, Seydi Battal & Ali, Khalid K., 2020. "Analytical and computational approaches on solitary wave solutions of the generalized equal width equation," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    6. Khaled, Khachnaoui, 2021. "Nehari type solutions for fractional Hamiltonian systems," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    7. El-Tantawy, S.A. & Salas, Alvaro H. & Alharthi, M.R., 2021. "Novel analytical cnoidal and solitary wave solutions of the Extended Kawahara equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    8. Dubey, Ved Prakash & Dubey, Sarvesh & Kumar, Devendra & Singh, Jagdev, 2021. "A computational study of fractional model of atmospheric dynamics of carbon dioxide gas," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Ahmed A. El-Deeb & Jan Awrejcewicz, 2021. "Novel Fractional Dynamic Hardy–Hilbert-Type Inequalities on Time Scales with Applications," Mathematics, MDPI, vol. 9(22), pages 1-31, November.
    10. Korkmaz, Alper & Dağ, İdris, 2009. "Crank-Nicolson – Differential quadrature algorithms for the Kawahara equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 65-73.
    11. Çulha Ünal, Sevil & Daşcıoğlu, Ayşegül & Varol Bayram, Dilek, 2020. "New exact solutions of space and time fractional modified Kawahara equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    12. Devi, Munesh & Yadav, Shalini & Arora, Rajan, 2021. "Optimal system, invariance analysis of fourth-Order nonlinear ablowitz-Kaup-Newell-Segur water wave dynamical equation using lie symmetry approach," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    13. Khirsariya, Sagar R. & Chauhan, Jignesh P. & Rao, Snehal B., 2024. "A robust computational analysis of residual power series involving general transform to solve fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 168-186.
    14. Baogui Xin & Wei Peng & Yekyung Kwon & Yanqin Liu, 2019. "Modeling, discretization, and hyperchaos detection of conformable derivative approach to a financial system with market confidence and ethics risk," Papers 1903.12267, arXiv.org, revised Apr 2019.
    15. Ahmed A. El-Deeb & Jan Awrejcewicz, 2021. "Steffensen-Type Inequalities with Weighted Function via ( γ , a )-Nabla-Conformable Integral on Time Scales," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    16. Goswami, Amit & Singh, Jagdev & Kumar, Devendra & Sushila,, 2019. "An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 563-575.
    17. Petropoulou, Eugenia N. & Siafarikas, Panayiotis D. & Stabolas, Ioannis D., 2009. "Analytic bounded travelling wave solutions of some nonlinear equations II," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 803-810.
    18. Bekir, Ahmet, 2009. "The tanh–coth method combined with the Riccati equation for solving non-linear equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1467-1474.
    19. He, Dongdong & Pan, Kejia, 2015. "A linearly implicit conservative difference scheme for the generalized Rosenau–Kawahara-RLW equation," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 323-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:96:y:2017:i:c:p:132-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.