IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v75y2015icp111-117.html
   My bibliography  Save this article

Design of adaptive sliding mode control for synchronization Genesio–Tesi chaotic system

Author

Listed:
  • Ghamati, Mina
  • Balochian, Saeed

Abstract

In this paper two adaptive sliding mode controls for synchronizing the state trajectories of the Genesio–Tesi system with unknown parameters and external disturbance are proposed. A switching surface is introduced and based on this switching surface, two adaptive sliding mode control schemes are presented to guarantee the occurrence of the sliding motion. The stability and robustness of the two proposed schemes are proved using Lyapunov stability theory. The effectiveness of our introduced schemes is provided by numerical simulations.

Suggested Citation

  • Ghamati, Mina & Balochian, Saeed, 2015. "Design of adaptive sliding mode control for synchronization Genesio–Tesi chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 111-117.
  • Handle: RePEc:eee:chsofr:v:75:y:2015:i:c:p:111-117
    DOI: 10.1016/j.chaos.2015.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077915000429
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi, Guoyuan & Chen, Guanrong & Du, Shengzhi & Chen, Zengqiang & Yuan, Zhuzhi, 2005. "Analysis of a new chaotic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 295-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kocamaz, Uğur Erkin & Cevher, Barış & Uyaroğlu, Yılmaz, 2017. "Control and synchronization of chaos with sliding mode control based on cubic reaching rule," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 92-98.
    2. Anand, Pallov & Sharma, Bharat Bhushan, 2020. "Simplified synchronizability scheme for a class of nonlinear systems connected in chain configuration using contraction," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Muhamad Deni Johansyah & Aceng Sambas & Saleh Mobayen & Behrouz Vaseghi & Saad Fawzi Al-Azzawi & Sukono & Ibrahim Mohammed Sulaiman, 2022. "Dynamical Analysis and Adaptive Finite-Time Sliding Mode Control Approach of the Financial Fractional-Order Chaotic System," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    4. Zhang, Xingpeng & Li, Dong & Zhang, Xiaohong, 2017. "Adaptive fuzzy impulsive synchronization of chaotic systems with random parameters," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 77-83.
    5. Yao, Qijia, 2021. "Neural adaptive learning synchronization of second-order uncertain chaotic systems with prescribed performance guarantees," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xiyin & Qi, Guoyuan, 2017. "Mechanical analysis of Chen chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 173-177.
    2. Wu, Wen-Juan & Chen, Zeng-Qiang & Yuan, Zhu-Zhi, 2009. "A computer-assisted proof for the existence of horseshoe in a novel chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2756-2761.
    3. Megam Ngouonkadi, E.B. & Fotsin, H.B. & Louodop Fotso, P. & Kamdoum Tamba, V. & Cerdeira, Hilda A., 2016. "Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 151-163.
    4. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Çalış, Yasemin & Demirci, Ali & Özemir, Cihangir, 2022. "Hopf bifurcation of a financial dynamical system with delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 343-361.
    6. Wu, Yue & Zhou, Xiaobing & Chen, Jia & Hui, Bei, 2009. "Chaos synchronization of a new 3D chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1812-1819.
    7. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    8. Faradja, Philippe & Qi, Guoyuan, 2020. "Analysis of multistability, hidden chaos and transient chaos in brushless DC motor," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    9. Wu, Jiening & Wang, Lidan & Chen, Guanrong & Duan, Shukai, 2016. "A memristive chaotic system with heart-shaped attractors and its implementation," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 20-29.
    10. Qi, Guoyuan & van Wyk, Michaël Antonie & van Wyk, Barend Jacobus & Chen, Guanrong, 2009. "A new hyperchaotic system and its circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2544-2549.
    11. Wu, Ranchao & Fang, Tianbao, 2015. "Stability and Hopf bifurcation of a Lorenz-like system," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 335-343.
    12. Guohui Li & Xiangyu Zhang & Hong Yang, 2019. "Numerical Analysis, Circuit Simulation, and Control Synchronization of Fractional-Order Unified Chaotic System," Mathematics, MDPI, vol. 7(11), pages 1-18, November.
    13. Singh, Jay Prakash & Roy, Binoy Krishna, 2018. "Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 81-91.
    14. Zhou, Xiaobing & Wu, Yue & Li, Yi & Wei, Zhengxi, 2008. "Hopf bifurcation analysis of the Liu system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1385-1391.
    15. Yang Peng & Jiang Wu & Limin Zou & Yuming Feng & Zhengwen Tu, 2019. "A Generalization of the Cauchy-Schwarz Inequality and Its Application to Stability Analysis of Nonlinear Impulsive Control Systems," Complexity, Hindawi, vol. 2019, pages 1-7, March.
    16. Qi, Guoyuan & Chen, Guanrong & Zhang, Yuhui, 2008. "On a new asymmetric chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 409-423.
    17. Zarei, Amin & Tavakoli, Saeed, 2016. "Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 323-339.
    18. Ma, Junhai & Cui, Yaqiang & Liulixia,, 2009. "A study on the complexity of a business cycle model with great excitements in non-resonant condition," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2258-2267.
    19. Zhang, Jianxiong & Tang, Wansheng, 2009. "Analysis and control for a new chaotic system via piecewise linear feedback," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2181-2190.
    20. Daniel Ríos-Rivera & Alma Y. Alanis & Edgar N. Sanchez, 2020. "Neural-Impulsive Pinning Control for Complex Networks Based on V-Stability," Mathematics, MDPI, vol. 8(9), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:75:y:2015:i:c:p:111-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.