IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v45y2012i7p966-977.html
   My bibliography  Save this article

Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices

Author

Listed:
  • Liao, Shu
  • Wang, Jin

Abstract

In this paper, we study the global dynamics of a class of mathematical epidemiological models formulated by systems of differential equations. These models involve both human population and environmental component(s) and constitute high-dimensional nonlinear autonomous systems, for which the global asymptotic stability of the endemic equilibria has been a major challenge in analyzing the dynamics. By incorporating the theory of Volterra–Lyapunov stable matrices into the classical method of Lyapunov functions, we present an approach for global stability analysis and obtain new results on some three- and four-dimensional model systems. In addition, we conduct numerical simulation to verify the analytical results.

Suggested Citation

  • Liao, Shu & Wang, Jin, 2012. "Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices," Chaos, Solitons & Fractals, Elsevier, vol. 45(7), pages 966-977.
  • Handle: RePEc:eee:chsofr:v:45:y:2012:i:7:p:966-977
    DOI: 10.1016/j.chaos.2012.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077912000823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2012.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Guihua & Zhen, Jin, 2005. "Global stability of an SEI epidemic model with general contact rate," Chaos, Solitons & Fractals, Elsevier, vol. 23(3), pages 997-1004.
    2. D. Scott Merrell & Susan M. Butler & Firdausi Qadri & Nadia A. Dolganov & Ahsfaqul Alam & Mitchell B. Cohen & Stephen B. Calderwood & Gary K. Schoolnik & Andrew Camilli, 2002. "Host-induced epidemic spread of the cholera bacterium," Nature, Nature, vol. 417(6889), pages 642-645, June.
    3. Tewa, Jean Jules & Dimi, Jean Luc & Bowong, Samuel, 2009. "Lyapunov functions for a dengue disease transmission model," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 936-941.
    4. Li, Guihua & Wang, Wendi & Jin, Zhen, 2006. "Global stability of an SEIR epidemic model with constant immigration," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 1012-1019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueyong Zhou, 2022. "Dynamical Analysis of a Stochastic Cholera Epidemic Model," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
    2. Pengcheng Shao & Stanford Shateyi, 2021. "Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function," Mathematics, MDPI, vol. 9(21), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yi & Cao, Jinde, 2014. "Global dynamics of multi-group SEI animal disease models with indirect transmission," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 81-89.
    2. Tewa, Jean Jules & Dimi, Jean Luc & Bowong, Samuel, 2009. "Lyapunov functions for a dengue disease transmission model," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 936-941.
    3. Zhang, Tailei & Teng, Zhidong, 2008. "Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1456-1468.
    4. Raja Sekhara Rao, P. & Naresh Kumar, M., 2015. "A dynamic model for infectious diseases: The role of vaccination and treatment," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 34-49.
    5. Yang, Yali & Li, Jianquan & Ma, Zhien & Liu, Luju, 2010. "Global stability of two models with incomplete treatment for tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 79-85.
    6. Selvan, T. Tamil & Kumar, M., 2023. "Dynamics of a deterministic and a stochastic epidemic model combined with two distinct transmission mechanisms and saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    7. Kolebaje, Olusola & Popoola, Oyebola & Khan, Muhammad Altaf & Oyewande, Oluwole, 2020. "An epidemiological approach to insurgent population modeling with the Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Saha, Pritam & Sikdar, Gopal Chandra & Ghosh, Jayanta Kumar & Ghosh, Uttam, 2023. "Disease dynamics and optimal control strategies of a two serotypes dengue model with co-infection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 16-43.
    9. Sun, Chengjun & Lin, Yiping & Tang, Shoupeng, 2007. "Global stability for an special SEIR epidemic model with nonlinear incidence rates," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 290-297.
    10. Anusit Chamnan & Puntani Pongsumpun & I-Ming Tang & Napasool Wongvanich, 2022. "Effect of a Vaccination against the Dengue Fever Epidemic in an Age Structure Population: From the Perspective of the Local and Global Stability Analysis," Mathematics, MDPI, vol. 10(6), pages 1-25, March.
    11. Buonomo, Bruno & Cerasuolo, Marianna, 2014. "Stability and bifurcation in plant–pathogens interactions," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 858-871.
    12. Zhou, Yugui & Xiao, Dongmei & Li, Yilong, 2007. "Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1903-1915.
    13. Malik, Hafiz Abid Mahmood & Abid, Faiza & Wahiddin, Mohamed Ridza & Waqas, Ahmad, 2021. "Modeling of internal and external factors affecting a complex dengue network," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    14. Srivastav, Akhil Kumar & Ghosh, Mini, 2019. "Assessing the impact of treatment on the dynamics of dengue fever: A case study of India," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    15. Ilnytskyi, Jaroslav & Pikuta, Piotr & Ilnytskyi, Hryhoriy, 2018. "Stationary states and spatial patterning in the cellular automaton SEIS epidemiology model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 241-255.
    16. Medda, Rakesh & Tiwari, Pankaj Kumar & Pal, Samares, 2024. "Impacts of planktonic components on the dynamics of cholera epidemic: Implications from a mathematical model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 505-526.
    17. Ren, Jianguo & Yang, Xiaofan & Yang, Lu-Xing & Xu, Yonghong & Yang, Fanzhou, 2012. "A delayed computer virus propagation model and its dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 74-79.
    18. Wen, Luosheng & Yang, Xiaofan, 2008. "Global stability of a delayed SIRS model with temporary immunity," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 221-226.
    19. Xue, Ling & Zhang, Hongyu & Sun, Wei & Scoglio, Caterina, 2021. "Transmission dynamics of multi-strain dengue virus with cross-immunity," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    20. Cao, Zhongwei & Feng, Wei & Wen, Xiangdan & Zu, Li, 2019. "Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 894-907.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:45:y:2012:i:7:p:966-977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.