IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i4p2239-2245.html
   My bibliography  Save this article

Global exponential stability of fuzzy BAM neural networks with time-varying delays

Author

Listed:
  • Zhang, Qianhong
  • Luo, Wei

Abstract

In this paper, a class of fuzzy bidirectional associated memory (BAM) neural networks with time-varying delays are studied. Employing fixed point theorem, matrix theory and inequality analysis, some sufficient conditions are established for the existence, uniqueness and global exponential stability of equilibrium point. The sufficient conditions are easy to verify at pattern recognition and automatic control. Finally, an example is given to show feasibility and effectiveness of our results.

Suggested Citation

  • Zhang, Qianhong & Luo, Wei, 2009. "Global exponential stability of fuzzy BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2239-2245.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:2239-2245
    DOI: 10.1016/j.chaos.2009.03.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909002835
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ju H., 2006. "A novel criterion for global asymptotic stability of BAM neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 446-453.
    2. Xia, Yonghui & Cao, Jinde & Lin, Muren, 2007. "New results on the existence and uniqueness of almost periodic solution for BAM neural networks with continuously distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 928-936.
    3. Xia, Yonghui & Huang, Zhenkun & Han, Maoan, 2008. "Existence and globally exponential stability of equilibrium for BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 588-597.
    4. Park, Ju H., 2006. "On global stability criterion for neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 897-902.
    5. Huang, Zai-Tang & Luo, Xiao-Shu & Yang, Qi-Gui, 2007. "Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 878-885.
    6. Cui, Bao Tong & Lou, Xu Yang, 2006. "Global asymptotic stability of BAM neural networks with distributed delays and reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1347-1354.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Juan & Hu, Cheng & Jiang, Haijun & Teng, Zhidong, 2012. "Exponential lag synchronization for delayed fuzzy cellular neural networks via periodically intermittent control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 895-908.
    2. Wang, Mei-Qi & Ma, Wen-Li & Li, Yuan & Chen, En-Li & Liu, Peng-Fei & Zhang, Ming-Zhi, 2022. "Dynamic analysis of piecewise nonlinear systems with fractional differential delay feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Gani Stamov & Ivanka Stamova & Stanislav Simeonov & Ivan Torlakov, 2020. "On the Stability with Respect to H-Manifolds for Cohen–Grossberg-Type Bidirectional Associative Memory Neural Networks with Variable Impulsive Perturbations and Time-Varying Delays," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    4. Qian-hong Zhang & Li-hui Yang, 2012. "Dynamical analysis of fuzzy BAM neural networks with variable delays," Fuzzy Information and Engineering, Springer, vol. 4(1), pages 93-104, March.
    5. Ye, Zhiyong & Zhang, He & Zhang, Hongyu & Zhang, Hua & Lu, Guichen, 2015. "Mean square stabilization and mean square exponential stabilization of stochastic BAM neural networks with Markovian jumping parameters," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 156-165.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Huiwei & Song, Qiankun & Duan, Chengjun, 2010. "LMI criteria on exponential stability of BAM neural networks with both time-varying delays and general activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 837-850.
    2. Liao, Huaying & Zhang, Zhengqiu & Ren, Ling & Peng, Wenli, 2017. "Global asymptotic stability of periodic solutions for inertial delayed BAM neural networks via novel computing method of degree and inequality techniques," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 785-797.
    3. Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
    4. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    5. Qian-hong Zhang & Li-hui Yang, 2012. "Dynamical analysis of fuzzy BAM neural networks with variable delays," Fuzzy Information and Engineering, Springer, vol. 4(1), pages 93-104, March.
    6. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    7. Zhang, Jianmei & Wu, Jianwei & Bao, Haibo & Cao, Jinde, 2018. "Synchronization analysis of fractional-order three-neuron BAM neural networks with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 441-450.
    8. Song, Qiankun & Wang, Zidong, 2008. "Neural networks with discrete and distributed time-varying delays: A general stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1538-1547.
    9. Park, Ju H. & Kwon, O.M., 2009. "Global stability for neural networks of neutral-type with interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1174-1181.
    10. J. H. Park & S. M. Lee & H. Y. Jung, 2009. "LMI Optimization Approach to Synchronization of Stochastic Delayed Discrete-Time Complex Networks," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 357-367, November.
    11. R. Sakthivel & R. Raja & S. M. Anthoni, 2013. "Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 251-273, July.
    12. Park, Ju H. & Lee, S.M. & Kwon, O.M., 2009. "On exponential stability of bidirectional associative memory neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1083-1091.
    13. Ratnavelu, K. & Manikandan, M. & Balasubramaniam, P., 2015. "Synchronization of fuzzy bidirectional associative memory neural networks with various time delays," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 582-605.
    14. Hien, Le Van & Son, Doan Thai, 2015. "Finite-time stability of a class of non-autonomous neural networks with heterogeneous proportional delays," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 14-23.
    15. Sader, Malika & Abdurahman, Abdujelil & Jiang, Haijun, 2018. "General decay synchronization of delayed BAM neural networks via nonlinear feedback control," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 302-314.
    16. Yang, Yu & Ye, Jin, 2009. "Stability and bifurcation in a simplified five-neuron BAM neural network with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2357-2363.
    17. Zhou, Jun & Zhao, Weirui & Lv, Xiaohong & Zhu, Huaping, 2011. "Stability analysis of almost periodic solutions for delayed neural networks without global Lipschitz activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2440-2455.
    18. Yang, Degang & Hu, Chunyan & Chen, Yong & Wei, Pengcheng & Yang, Huaqian, 2009. "New delay-dependent global asymptotic stability criteria of delayed BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 854-864.
    19. Park, Ju H., 2008. "On global stability criterion of neural networks with continuously distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 444-449.
    20. Zheng, Baodong & Zhang, Yazhuo & Zhang, Chunrui, 2008. "Global existence of periodic solutions on a simplified BAM neural network model with delays," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1397-1408.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:2239-2245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.