IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i2p874-884.html
   My bibliography  Save this article

Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate

Author

Listed:
  • Li, Xue-Zhi
  • Zhou, Lin-Lin

Abstract

In this paper, the SEIR epidemic model with vertical transmission and the saturating contact rate is studied. It is proved that the global dynamics are completely determined by the basic reproduction number R0(p,q), where p and q are fractions of infected newborns from the exposed and infectious classes, respectively. If R0(p,q)⩽1, the disease-free equilibrium is globally asymptotically stable and the disease always dies out. If R0(p,q)>1, a unique endemic equilibrium exists and is globally stable in the interior of the feasible region, and the disease persists at the endemic equilibrium state if it initially exists.

Suggested Citation

  • Li, Xue-Zhi & Zhou, Lin-Lin, 2009. "Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 874-884.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:2:p:874-884
    DOI: 10.1016/j.chaos.2007.08.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907006509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.08.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Yu & Wang, Wendi & Xiao, Shiwu, 2007. "An SIRS model with a nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1482-1497.
    2. Li, Guihua & Zhen, Jin, 2005. "Global stability of an SEI epidemic model with general contact rate," Chaos, Solitons & Fractals, Elsevier, vol. 23(3), pages 997-1004.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jana, Soovoojeet & Haldar, Palash & Kar, T.K., 2016. "Optimal control and stability analysis of an epidemic model with population dispersal," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 67-81.
    2. Yin, Qian & Wang, Zhishuang & Xia, Chengyi & Dehmer, Matthias & Emmert-Streib, Frank & Jin, Zhen, 2020. "A novel epidemic model considering demographics and intercity commuting on complex dynamical networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    3. Lan, Guijie & Song, Baojun & Yuan, Sanling, 2023. "Epidemic threshold and ergodicity of an SEIR model with vertical transmission under the telegraph noise," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Ren, Jianguo & Yang, Xiaofan & Yang, Lu-Xing & Xu, Yonghong & Yang, Fanzhou, 2012. "A delayed computer virus propagation model and its dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 74-79.
    5. Xu, Rui & Wang, Zhili & Zhang, Fengqin, 2015. "Global stability and Hopf bifurcations of an SEIR epidemiological model with logistic growth and time delay," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 332-342.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahrouz, A. & El Mahjour, H. & Settati, A. & Bernoussi, A., 2018. "Dynamics and optimal control of a non-linear epidemic model with relapse and cure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 299-317.
    2. Zhang, Tailei & Teng, Zhidong, 2008. "Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1456-1468.
    3. Wanduku, Divine, 2017. "Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 49-76.
    4. Fatima, Bibi & Zaman, Gul, 2020. "Co-infection of Middle Eastern respiratory syndrome coronavirus and pulmonary tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Rahman, Ghaus ur & Shah, Kamal & Haq, Fazal & Ahmad, Naveed, 2018. "Host vector dynamics of pine wilt disease model with convex incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 31-39.
    6. Yang, Yali & Li, Jianquan & Ma, Zhien & Liu, Luju, 2010. "Global stability of two models with incomplete treatment for tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 79-85.
    7. Li, Guihua & Wang, Wendi & Jin, Zhen, 2006. "Global stability of an SEIR epidemic model with constant immigration," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 1012-1019.
    8. Selvan, T. Tamil & Kumar, M., 2023. "Dynamics of a deterministic and a stochastic epidemic model combined with two distinct transmission mechanisms and saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    9. Tipsri, S. & Chinviriyasit, W., 2015. "The effect of time delay on the dynamics of an SEIR model with nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 153-172.
    10. Zhang, Tailei & Teng, Zhidong, 2009. "Extinction and permanence for a pulse vaccination delayed SEIRS epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2411-2425.
    11. Li, Guihua & Jin, Zhen, 2005. "Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1177-1184.
    12. Florin Avram & Rim Adenane & Lasko Basnarkov & Matthew D. Johnston, 2023. "Algorithmic Approach for a Unique Definition of the Next-Generation Matrix," Mathematics, MDPI, vol. 12(1), pages 1-40, December.
    13. Sun, Chengjun & Lin, Yiping & Tang, Shoupeng, 2007. "Global stability for an special SEIR epidemic model with nonlinear incidence rates," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 290-297.
    14. Xu, Rui & Ma, Zhien, 2009. "Stability of a delayed SIRS epidemic model with a nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2319-2325.
    15. Zhou, Yugui & Xiao, Dongmei & Li, Yilong, 2007. "Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1903-1915.
    16. Wang, Chenxu & Wang, Gaoshuai & Luo, Xiapu & Li, Hui, 2019. "Modeling rumor propagation and mitigation across multiple social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Zhou, Baoquan & Jiang, Daqing & Dai, Yucong & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vaccination strategies," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    18. Singh, Anurag & Arquam, Md, 2022. "Epidemiological modeling for COVID-19 spread in India with the effect of testing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    19. Wang, Yi & Cao, Jinde, 2014. "Global dynamics of multi-group SEI animal disease models with indirect transmission," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 81-89.
    20. Ilnytskyi, Jaroslav & Pikuta, Piotr & Ilnytskyi, Hryhoriy, 2018. "Stationary states and spatial patterning in the cellular automaton SEIS epidemiology model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 241-255.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:2:p:874-884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.