IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i2p821-825.html
   My bibliography  Save this article

Cryptanalysis of a cryptographic scheme based on delayed chaotic neural networks

Author

Listed:
  • Yang, Jiyun
  • Liao, Xiaofeng
  • Yu, Wenwu
  • Wong, Kwok-wo
  • Wei, Jun

Abstract

Recently, Yu et al. presented a new cryptographic scheme based on delayed chaotic neural networks. In this letter, a fundamental flaw in Yu’s scheme is described. By means of chosen plaintext attack, the secret keystream used can easily be obtained.

Suggested Citation

  • Yang, Jiyun & Liao, Xiaofeng & Yu, Wenwu & Wong, Kwok-wo & Wei, Jun, 2009. "Cryptanalysis of a cryptographic scheme based on delayed chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 821-825.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:2:p:821-825
    DOI: 10.1016/j.chaos.2007.08.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790700642X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.08.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Linhua & Liao, Xiaofeng & Wang, Xuebing, 2005. "An image encryption approach based on chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 759-765.
    2. Gao, Haojiang & Zhang, Yisheng & Liang, Shuyun & Li, Dequn, 2006. "A new chaotic algorithm for image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 393-399.
    3. Álvarez, G. & Montoya, F. & Romera, M. & Pastor, G., 2005. "Cryptanalyzing an improved security modulated chaotic encryption scheme using ciphertext absolute value," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1749-1756.
    4. Huang, Fangjun & Guan, Zhi-Hong, 2005. "A modified method of a class of recently presented cryptosystems," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1893-1899.
    5. Lei, Min & Meng, Guang & Feng, Zhengjin, 2006. "Security analysis of chaotic communication systems based on Volterra–Wiener–Korenberg model," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 264-270.
    6. Wei, Jun & Liao, Xiaofeng & Wong, Kwok-wo & Xiang, Tao, 2006. "A new chaotic cryptosystem," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1143-1152.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, S. & Chang, E. & Dillon, T. & Hwang, M. & Lee, C., 2009. "Identifying attributes and insecurity of a public-channel key exchange protocol using chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2569-2575.
    2. Kanso, Ali & Smaoui, Nejib, 2009. "Logistic chaotic maps for binary numbers generations," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2557-2568.
    3. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    4. Gao, Tiegang & Chen, Zengqiang, 2008. "Image encryption based on a new total shuffling algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 213-220.
    5. Zaher, Ashraf A., 2009. "An improved chaos-based secure communication technique using a novel encryption function with an embedded cipher key," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2804-2814.
    6. Mazloom, Sahar & Eftekhari-Moghadam, Amir Masud, 2009. "Color image encryption based on Coupled Nonlinear Chaotic Map," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1745-1754.
    7. Yildirim, Melih, 2022. "Optical color image encryption scheme with a novel DNA encoding algorithm based on a chaotic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    8. Gao, Haojiang & Zhang, Yisheng & Liang, Shuyun & Li, Dequn, 2006. "A new chaotic algorithm for image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 393-399.
    9. Xiao, Di & Liao, Xiaofeng & Wei, Pengcheng, 2009. "Analysis and improvement of a chaos-based image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2191-2199.
    10. Mi, Bo & Liao, Xiaofeng & Chen, Yong, 2008. "A novel chaotic encryption scheme based on arithmetic coding," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1523-1531.
    11. Wong, Kwok-Wo & Kwok, Bernie Sin-Hung & Yuen, Ching-Hung, 2009. "An efficient diffusion approach for chaos-based image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2652-2663.
    12. Lian, Shiguo, 2009. "Efficient image or video encryption based on spatiotemporal chaos system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2509-2519.
    13. Yang, Degang & Liao, Xiaofeng & Wang, Yong & Yang, Huaqian & Wei, Pengcheng, 2009. "A novel chaotic block cryptosystem based on iterating map with output-feedback," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 505-510.
    14. Zhou, Qing & Wong, Kwok-wo & Liao, Xiaofeng & Xiang, Tao & Hu, Yue, 2008. "Parallel image encryption algorithm based on discretized chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1081-1092.
    15. Behnia, S. & Akhshani, A. & Akhavan, A. & Mahmodi, H., 2009. "Applications of tripled chaotic maps in cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 505-519.
    16. Arshad, Usman & Khan, Majid & Shaukat, Sajjad & Amin, Muhammad & Shah, Tariq, 2020. "An efficient image privacy scheme based on nonlinear chaotic system and linear canonical transformation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    17. Zhang, Linhua, 2008. "Cryptanalysis of the public key encryption based on multiple chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 669-674.
    18. Enas Ali Jameel, 2022. "Digital Image Encryption Techniques: Article Review," Technium, Technium Science, vol. 4(1), pages 24-35.
    19. Lei, Min & Meng, Guang, 2008. "The influence of noise on nonlinear time series detection based on Volterra–Wiener–Korenberg model," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 512-516.
    20. Dejian Fang & Shuliang Sun, 2020. "A new secure image encryption algorithm based on a 5D hyperchaotic map," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:2:p:821-825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.