IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v37y2008i3p669-674.html
   My bibliography  Save this article

Cryptanalysis of the public key encryption based on multiple chaotic systems

Author

Listed:
  • Zhang, Linhua

Abstract

Recently, Ranjan proposed a novel public key encryption technique based on multiple chaotic systems [Phys Lett 2005;95]. Unfortunately, Wang soon gave a successful attack on its special case based on Parseval’s theorem [Wang K, Pei W, Zhou L, et al. Security of public key encryption technique based on multiple chaotic system. Phys Lett A, in press]. In this letter, we give an improved example which can avoid the attack and point out that Wang cannot find the essential drawback of the technique. However, further experimental result shows Ruanjan’s encryption technique is inefficient, and detailed theoretic analysis shows that the complexity to break the cryptosystem is overestimated.

Suggested Citation

  • Zhang, Linhua, 2008. "Cryptanalysis of the public key encryption based on multiple chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 669-674.
  • Handle: RePEc:eee:chsofr:v:37:y:2008:i:3:p:669-674
    DOI: 10.1016/j.chaos.2006.09.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790600909X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.09.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lian, Shiguo & Sun, Jinsheng & Wang, Zhiquan, 2005. "A block cipher based on a suitable use of the chaotic standard map," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 117-129.
    2. Khan, Muhammad Khurram & Zhang, Jiashu & Tian, Lei, 2007. "Chaotic secure content-based hidden transmission of biometric templates," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1749-1759.
    3. Lei, Min & Meng, Guang & Feng, Zhengjin, 2006. "Security analysis of chaotic communication systems based on Volterra–Wiener–Korenberg model," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 264-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Xie & Yuanyuan Zhao, 2023. "Physical-Unclonable-Function-Based Lightweight Three-Factor Authentication for Multiserver Architectures," Mathematics, MDPI, vol. 12(1), pages 1-20, December.
    2. Yicheng Yu & Oliver Taylor & Rui Li & Baiho Sunagawa, 2021. "An Extended Chaotic Map-Based Authentication and Key Agreement Scheme for Multi-Server Environment," Mathematics, MDPI, vol. 9(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Min & Meng, Guang, 2008. "The influence of noise on nonlinear time series detection based on Volterra–Wiener–Korenberg model," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 512-516.
    2. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    3. Yang, Jiyun & Liao, Xiaofeng & Yu, Wenwu & Wong, Kwok-wo & Wei, Jun, 2009. "Cryptanalysis of a cryptographic scheme based on delayed chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 821-825.
    4. Zaher, Ashraf A., 2009. "An improved chaos-based secure communication technique using a novel encryption function with an embedded cipher key," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2804-2814.
    5. Hu, Yue & Liao, Xiaofeng & Wong, Kwok-wo & Zhou, Qing, 2009. "A true random number generator based on mouse movement and chaotic cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2286-2293.
    6. Wang, Yong & Wong, Kwok-Wo & Liao, Xiaofeng & Xiang, Tao & Chen, Guanrong, 2009. "A chaos-based image encryption algorithm with variable control parameters," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1773-1783.
    7. Xiangjun Wu & Yang Li & Jürgen Kurths, 2015. "A New Color Image Encryption Scheme Using CML and a Fractional-Order Chaotic System," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-28, March.
    8. Xiong Wang & Akif Akgul & Sezgin Kacar & Viet-Thanh Pham, 2017. "Multimedia Security Application of a Ten-Term Chaotic System without Equilibrium," Complexity, Hindawi, vol. 2017, pages 1-10, November.
    9. Xiang, Tao & Wong, Kwok-Wo & Liao, Xiaofeng, 2009. "On the security of a novel key agreement protocol based on chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 672-675.
    10. Behnia, S. & Akhshani, A. & Ahadpour, S. & Akhavan, A. & Mahmodi, H., 2009. "Cryptography based on chaotic random maps with position dependent weighting probabilities," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 362-369.
    11. Runze Zhang & Yujie Zhu & Zhongshen Liu & Guohong Feng & Pengfei Diao & Hongen Wang & Shenghong Fu & Shuo Lv & Chen Zhang, 2023. "A Back Propagation Neural Network Model for Postharvest Blueberry Shelf-Life Prediction Based on Feature Selection and Dung Beetle Optimizer," Agriculture, MDPI, vol. 13(9), pages 1-31, September.
    12. Han, S. & Chang, E. & Dillon, T. & Hwang, M. & Lee, C., 2009. "Identifying attributes and insecurity of a public-channel key exchange protocol using chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2569-2575.
    13. Wong, Kwok-Wo & Kwok, Bernie Sin-Hung & Yuen, Ching-Hung, 2009. "An efficient diffusion approach for chaos-based image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2652-2663.
    14. Lian, Shiguo, 2009. "Efficient image or video encryption based on spatiotemporal chaos system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2509-2519.
    15. Zhang, Yu & Sprecher, Alicia J. & Zhao, ZongXi & Jiang, Jack J., 2011. "Nonlinear detection of disordered voice productions from short time series based on a Volterra–Wiener–Korenberg model," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 751-758.
    16. Lian, Shiguo & Sun, Jinsheng & Wang, Jinwei & Wang, Zhiquan, 2007. "A chaotic stream cipher and the usage in video protection," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 851-859.
    17. Zhao, Liang & Liao, Xiaofeng & Xiao, Di & Xiang, Tao & Zhou, Qing & Duan, Shukai, 2009. "True random number generation from mobile telephone photo based on chaotic cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1692-1699.
    18. Zhou, Qing & Wong, Kwok-wo & Liao, Xiaofeng & Xiang, Tao & Hu, Yue, 2008. "Parallel image encryption algorithm based on discretized chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1081-1092.
    19. Tang, Fang, 2008. "An adaptive synchronization strategy based on active control for demodulating message hidden in chaotic signals," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1090-1096.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:37:y:2008:i:3:p:669-674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.