IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v28y2006i3p793-803.html
   My bibliography  Save this article

Global asymptotic stability of generalized bi-directional associative memory networks with discrete and distributed delays

Author

Listed:
  • Liu, Yurong
  • Wang, Zidong
  • Liu, Xiaohui

Abstract

In this paper, the global asymptotic stability analysis problem is investigated for a class of delayed Generalized Bi-directional Associative Memory (GBAM) networks. The mixed time delays consist of both the discrete delays and the distributed delays. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, we employ the Lyapunov–Krasovskii stability theory and develop some new techniques, so as to establish sufficient conditions for the delayed GBAM networks to be globally asymptotically stable. These conditions are expressed in terms of the feasibility to a couple of linear matrix inequalities (LMIs). Therefore, the global asymptotic stability of the delayed GBAM can be easily checked by utilizing the numerically efficient Matlab LMI toolbox. A simple example is exploited to show the usefulness of the derived LMI-based stability conditions.

Suggested Citation

  • Liu, Yurong & Wang, Zidong & Liu, Xiaohui, 2006. "Global asymptotic stability of generalized bi-directional associative memory networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 793-803.
  • Handle: RePEc:eee:chsofr:v:28:y:2006:i:3:p:793-803
    DOI: 10.1016/j.chaos.2005.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905006120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Xia & Cao, Jinde & Huang, De-Shuang, 2005. "LMI-based approach for delay-dependent exponential stability analysis of BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 885-898.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yeong-Jeu, 2007. "Stability criterion for a class of descriptor systems with discrete and distributed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 986-993.
    2. Singh, Vimal, 2007. "On global exponential stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 188-193.
    3. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    4. Singh, Vimal, 2007. "On global robust stability of interval Hopfield neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1183-1188.
    5. Song, Qiankun, 2008. "Novel criteria for global exponential periodicity and stability of recurrent neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 720-728.
    6. Chiu, Kuo-Shou & Li, Tongxing, 2022. "New stability results for bidirectional associative memory neural networks model involving generalized piecewise constant delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 719-743.
    7. Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
    8. Singh, Vimal, 2007. "Some remarks on global asymptotic stability of neural networks with constant time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1720-1724.
    9. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2009. "Global exponential stability for nonautonomous cellular neural networks with unbounded delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1144-1151.
    10. Wang, Huiwei & Song, Qiankun & Duan, Chengjun, 2010. "LMI criteria on exponential stability of BAM neural networks with both time-varying delays and general activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 837-850.
    11. Sun, Yeong-Jeu, 2009. "Stability criteria for a class of differential inclusion systems with discrete and distributed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2386-2391.
    12. Sun, Yeong-Jeu & Gau, Ruey-Shyan & Hsieh, Jer-Guang, 2009. "Simple criteria for sector root clustering of uncertain systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 65-71.
    13. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    14. Sun, Yeong-Jeu, 2007. "Duality between observation and output feedback for linear systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 879-884.
    15. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    16. Singh, Vimal, 2007. "LMI approach to the global robust stability of a larger class of neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1927-1934.
    17. Burić, Nikola & Grozdanović, Ines & Vasović, Nebojša, 2008. "Excitable systems with internal and coupling delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 853-861.
    18. Liu, Yamin & Xuan, Zuxing & Wang, Zhen & Zhou, Jianping & Liu, Yajuan, 2020. "Sampled-data exponential synchronization of time-delay neural networks subject to random controller gain perturbations," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    19. Shu, Huisheng & Wang, Zidong & Lü, Zengwei, 2009. "Global asymptotic stability of uncertain stochastic bi-directional associative memory networks with discrete and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(3), pages 490-505.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chung-Cheng & Hsu, Chao-Hsing & Chen, Ying-Jen & Lin, Yen-Feng, 2007. "Disturbance attenuation of nonlinear control systems using an observer-based fuzzy feedback linearization control," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 885-900.
    2. Park, Ju H. & Lee, S.M. & Kwon, O.M., 2009. "On exponential stability of bidirectional associative memory neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1083-1091.
    3. Guan, Zhi-Hong & Zhang, Hao & Yang, Shuang-Hua, 2008. "Robust passive control for Internet-based switching systems with time-delay," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 479-486.
    4. Yan, Huaicheng & Huang, Xinhan & Wang, Min & Zhang, Hao, 2007. "Delay-dependent stability criteria for a class of networked control systems with multi-input and multi-output," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 997-1005.
    5. Ye, Zhiyong & Zhang, He & Zhang, Hongyu & Zhang, Hua & Lu, Guichen, 2015. "Mean square stabilization and mean square exponential stabilization of stochastic BAM neural networks with Markovian jumping parameters," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 156-165.
    6. Park, Ju H., 2006. "A novel criterion for global asymptotic stability of BAM neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 446-453.
    7. Sader, Malika & Abdurahman, Abdujelil & Jiang, Haijun, 2018. "General decay synchronization of delayed BAM neural networks via nonlinear feedback control," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 302-314.
    8. Yang, Degang & Liao, Xiaofeng & Hu, Chunyan & Wang, Yong, 2009. "New delay-dependent exponential stability criteria of BAM neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1679-1697.
    9. Zhou, Tiejun & Liu, Yuehua & Li, Xiaoping & Liu, Yirong, 2009. "A new criterion to global exponential periodicity for discrete-time BAM neural network with infinite delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 332-341.
    10. Lou, Xuyang & Cui, Baotong, 2007. "Absolute exponential stability analysis of delayed bi-directional associative memory neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 695-701.
    11. Liu, Hailin & Chen, Guohua, 2007. "Delay-dependent stability for neural networks with time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 171-177.
    12. Shen, Chang-Chun & Zhong, Shou-Ming, 2009. "New delay-dependent robust stability criterion for uncertain neutral systems with time-varying delay and nonlinear uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2277-2285.
    13. Yang, Degang & Hu, Chunyan & Chen, Yong & Wei, Pengcheng & Yang, Huaqian, 2009. "New delay-dependent global asymptotic stability criteria of delayed BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 854-864.
    14. Yan, Huaicheng & Huang, Xinhan & Wang, Min & Zhang, Hao, 2008. "New delay-dependent stability criteria of uncertain linear systems with multiple time-varying state delays," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 157-165.
    15. Qian-hong Zhang & Li-hui Yang, 2012. "Dynamical analysis of fuzzy BAM neural networks with variable delays," Fuzzy Information and Engineering, Springer, vol. 4(1), pages 93-104, March.
    16. Zheng, Baodong & Zhang, Yazhuo & Zhang, Chunrui, 2008. "Global existence of periodic solutions on a simplified BAM neural network model with delays," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1397-1408.
    17. Zhao, Hongyong & Ding, Nan, 2007. "Dynamic analysis of stochastic bidirectional associative memory neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1692-1702.
    18. Sheng, Li & Yang, Huizhong, 2009. "Novel global robust exponential stability criterion for uncertain BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2102-2113.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:28:y:2006:i:3:p:793-803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.