IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v33y2007i1p171-177.html
   My bibliography  Save this article

Delay-dependent stability for neural networks with time-varying delay

Author

Listed:
  • Liu, Hailin
  • Chen, Guohua

Abstract

In this paper, delay-dependent stability problem for neural networks with a time-varying delay is studied. The free-weighting matrix method is employed to derive an LMI-based criterion, in which the restriction of the derivative of a time-varying delay is removed. A delay-dependent and rate-independent stability criterion is derived as an easy corollary. Finally, the effectiveness of the presented stability criterion and its improvement over the existing results are demonstrated in numerical examples.

Suggested Citation

  • Liu, Hailin & Chen, Guohua, 2007. "Delay-dependent stability for neural networks with time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 171-177.
  • Handle: RePEc:eee:chsofr:v:33:y:2007:i:1:p:171-177
    DOI: 10.1016/j.chaos.2006.01.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906000208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.01.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Yong & Wang, Qing-Guo & Zheng, Wei-Xing, 2005. "Global robust stability for delayed neural networks with polytopic type uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1349-1354.
    2. Zhang, Hongbin & Li, Chunguang & Liao, Xiaofeng, 2005. "A note on the robust stability of neural networks with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 357-360.
    3. Li, Chuandong & Liao, Xiaofeng & Zhang, Rong, 2005. "Delay-dependent exponential stability analysis of bi-directional associative memory neural networks with time delay: an LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 1119-1134.
    4. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2005. "Delay-dependent exponential stability of cellular neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1363-1369.
    5. Liu, Jiang, 2005. "Global exponential stability of Cohen–Grossberg neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 935-945.
    6. Huang, Xia & Cao, Jinde & Huang, De-Shuang, 2005. "LMI-based approach for delay-dependent exponential stability analysis of BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 885-898.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raja, R. & Zhu, Quanxin & Senthilraj, S. & Samidurai, R., 2015. "Improved stability analysis of uncertain neutral type neural networks with leakage delays and impulsive effects," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1050-1069.
    2. Wang, Yao & Guo, Jun & Liu, Guobao & Lu, Junwei & Li, Fangyuan, 2021. "Finite-time sampled-data synchronization for uncertain neutral-type semi-Markovian jump neural networks with mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    3. Zhang, Hongmei & Cao, Jinde & Xiong, Lianglin, 2019. "Novel synchronization conditions for time-varying delayed Lur’e system with parametric uncertainty," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 224-236.
    4. Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
    5. Vadivel, R. & Hammachukiattikul, Porpattama & Rajchakit, G. & Syed Ali, M. & Unyong, Bundit, 2021. "Finite-time event-triggered approach for recurrent neural networks with leakage term and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 765-790.
    6. Cui, Kaiyan & Song, Zhanjie & Zhang, Shuo, 2022. "Stability of neutral-type neural network with Lévy noise and mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    7. Feng, Wei & Yang, Simon X. & Wu, Haixia, 2009. "On robust stability of uncertain stochastic neural networks with distributed and interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2095-2104.
    8. Zong, Guangdeng & Liu, Jia, 2009. "New delay-dependent global robust stability conditions for interval neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2954-2964.
    9. Tian, Junkang & Xu, Dongsheng, 2009. "New asymptotic stability criteria for neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1916-1922.
    10. Hu, Jiming, 2009. "Synchronization conditions for chaotic nonlinear continuous neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2495-2501.
    11. Lee, S.H. & Park, M.J. & Kwon, O.M. & Choi, S.G., 2022. "Less conservative stability criteria for general neural networks through novel delay-dependent functional," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    12. Maharajan, C. & Raja, R. & Cao, Jinde & Rajchakit, G. & Alsaedi, Ahmed, 2018. "Novel results on passivity and exponential passivity for multiple discrete delayed neutral-type neural networks with leakage and distributed time-delays," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 268-282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Huaicheng & Huang, Xinhan & Wang, Min & Zhang, Hao, 2007. "Delay-dependent stability criteria for a class of networked control systems with multi-input and multi-output," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 997-1005.
    2. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.
    3. Feng, Wei & Yang, Simon X. & Fu, Wei & Wu, Haixia, 2009. "Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 414-424.
    4. Yan, Huaicheng & Huang, Xinhan & Wang, Min & Zhang, Hao, 2008. "New delay-dependent stability criteria of uncertain linear systems with multiple time-varying state delays," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 157-165.
    5. Sun, Yeong-Jeu, 2007. "Duality between observation and output feedback for linear systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 879-884.
    6. He, Yong & Wang, Qing-Guo & Zheng, Wei-Xing, 2005. "Global robust stability for delayed neural networks with polytopic type uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1349-1354.
    7. Singh, Vimal, 2007. "Some remarks on global asymptotic stability of neural networks with constant time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1720-1724.
    8. Park, Ju H. & Lee, S.M. & Kwon, O.M., 2009. "On exponential stability of bidirectional associative memory neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1083-1091.
    9. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    10. Lou, Xu Yang & Cui, Bao Tong, 2006. "Global asymptotic stability of delay BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 1023-1031.
    11. Guan, Zhi-Hong & Zhang, Hao & Yang, Shuang-Hua, 2008. "Robust passive control for Internet-based switching systems with time-delay," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 479-486.
    12. Li, Chuandong & Chen, Jinyu & Huang, Tingwen, 2007. "A new criterion for global robust stability of interval neural networks with discrete time delays," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 561-570.
    13. Lu, Junwei & Guo, Yiqian & Xu, Shengyuan, 2006. "Global asymptotic stability analysis for cellular neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 349-353.
    14. Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
    15. Singh, Vimal, 2007. "On global exponential stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 188-193.
    16. Qiu, Jiqing & Yang, Hongjiu & Zhang, Jinhui & Gao, Zhifeng, 2009. "New robust stability criteria for uncertain neural networks with interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 579-585.
    17. Yang, Degang & Liao, Xiaofeng & Hu, Chunyan & Wang, Yong, 2009. "New delay-dependent exponential stability criteria of BAM neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1679-1697.
    18. Lien, Chang-Hua & Chung, Long-Yeu, 2007. "Global asymptotic stability for cellular neural networks with discrete and distributed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1213-1219.
    19. Wen, Zhen & Sun, Jitao, 2009. "Stability analysis of delayed Cohen–Grossberg BAM neural networks with impulses via nonsmooth analysis," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1829-1837.
    20. Zhou, Tiejun & Liu, Yuehua & Li, Xiaoping & Liu, Yirong, 2009. "A new criterion to global exponential periodicity for discrete-time BAM neural network with infinite delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 332-341.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:33:y:2007:i:1:p:171-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.