IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925003480.html
   My bibliography  Save this article

M-shape, lump, homoclinic breather and other soliton interaction of the Landau-Ginzburg-Higgs model in nonlinear fiber optics

Author

Listed:
  • Abdullah,
  • ur Rahman, Ghaus
  • Gómez-Aguilar, J.F.

Abstract

This study investigates the intricate dynamics of different types of solitons and their interactions within the framework of the Landau-Ginzburg-Higgs model as applied to nonlinear fiber optics. Employing the Hirota bilinear transformation technique, we derive a range of analytical soliton solutions, and demonstrating their rich and diverse behaviors. The proposed methodology provides a more comprehensive framework for analyzing transport processes by expanding these equations. M-shaped rational wave solutions with one kink, M-shaped rational waves with two kinks having bright and dark effects, periodic cross-kink with bright and dark waves, lump mixed-type waves, homoclinic breathers, and breather waves are among the various types of solitons. These many waveforms make it clear, soliton movement within optical fiber is extremely essential. They also offer valuable information that could influence soliton-based signal processing, optical communication systems, drug research, and other scientific fields. This extension of methodology aids in understanding the intricacy of soliton transport and identifying the intricate mechanisms. Additionally, by selecting various constant values, we create 3D and related contour plots to be aware of the physical interpretations of these solutions. Therefore, we get superior physical behaviors from these solutions.

Suggested Citation

  • Abdullah, & ur Rahman, Ghaus & Gómez-Aguilar, J.F., 2025. "M-shape, lump, homoclinic breather and other soliton interaction of the Landau-Ginzburg-Higgs model in nonlinear fiber optics," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925003480
    DOI: 10.1016/j.chaos.2025.116335
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925003480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925003480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.