IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925003443.html
   My bibliography  Save this article

High-rate discretely-modulated continuous-variable quantum key distribution using quantum machine learning

Author

Listed:
  • Liao, Qin
  • Fei, Zhuoying
  • Liu, Jieyu
  • Huang, Anqi
  • Huang, Lei
  • Wang, Yijun

Abstract

Continuous-variable quantum key distribution (CVQKD) is one of the promising ways to ensure information security. In this paper, we propose a high-rate scheme for discretely-modulated (DM) CVQKD using quantum machine learning technologies, which divides the whole CVQKD system into three parts, i.e., the initialization part that is used for training and estimating quantum classifier, the prediction part that is used for generating highly correlated raw keys, and the data postprocessing part that generates the final secret key string shared by Alice and Bob. To this end, a low-complexity quantum k-nearest neighbor (QkNN) classifier is designed for predicting the lossy discretely-modulated coherent states (DMCSs) at Bob’s side. The performance of the proposed QkNN-based CVQKD especially in terms of machine learning metrics and complexity is analyzed, and its theoretical security is proved by using semi-definite program (SDP) method. Numerical simulation shows that the secret key rate of our proposed scheme is explicitly superior to that of the existing DM CVQKD protocols, and it can be further enhanced with the increase of modulation variance.

Suggested Citation

  • Liao, Qin & Fei, Zhuoying & Liu, Jieyu & Huang, Anqi & Huang, Lei & Wang, Yijun, 2025. "High-rate discretely-modulated continuous-variable quantum key distribution using quantum machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925003443
    DOI: 10.1016/j.chaos.2025.116331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925003443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925003443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.