IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925002474.html
   My bibliography  Save this article

Heterogeneous Hopfield neural network with analog implementation

Author

Listed:
  • Bao, Bocheng
  • Zhou, Chunlong
  • Bao, Han
  • Chen, Bei
  • Chen, Mo

Abstract

The activation function plays a crucial role as a nonlinear factor in the Hopfield neural network. However, limited attention has been given to studying heterogeneous activation functions. In this study, we present a three-neuron heterogeneous Hopfield neural network incorporating two distinct activation functions, namely hyperbolic tangent function and sine function. The kinetics of the heterogeneous neural network is investigated theoretically and numerically, and the kinetic effect of the sine activation function is revealed thereby. The findings demonstrate the presence of intricate kinetics, including chaos, period, stable point, and coexisting attractors, and the enlargement of chaotic kinetics distribution on the parameter plane by sine activation function within the heterogeneous neural network. Notably, an analog circuit is designed on a hardware level to simplify the implementation of the heterogeneous Hopfield neural network and experimental measurements provide strong validation for the numerical findings.

Suggested Citation

  • Bao, Bocheng & Zhou, Chunlong & Bao, Han & Chen, Bei & Chen, Mo, 2025. "Heterogeneous Hopfield neural network with analog implementation," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002474
    DOI: 10.1016/j.chaos.2025.116234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925002474
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deng, Quanli & Wang, Chunhua & Lin, Hairong, 2024. "Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Chen, Chengjie & Min, Fuhong & Zhang, Yunzhen & Bao, Han, 2023. "ReLU-type Hopfield neural network with analog hardware implementation," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Wan, Qiuzhen & Li, Fei & Chen, Simiao & Yang, Qiao, 2023. "Symmetric multi-scroll attractors in magnetized Hopfield neural network under pulse controlled memristor and pulse current stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Chen, Mo & Ren, Xue & Wu, Huagan & Xu, Quan & Bao, Bocheng, 2020. "Interpreting initial offset boosting via reconstitution in integral domain," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    5. Li, Fangyuan & Chen, Zhuguan & Bao, Han & Bai, Lianfa & Bao, Bocheng, 2024. "Chaos and bursting patterns in two-neuron Hopfield neural network and analog implementation," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    6. Zhang, Shaohua & Zhang, Hongli & Wang, Cong & Lin, Hairong, 2024. "Bionic modeling and dynamics analysis of heterogeneous brain regions connected by memristive synaptic crosstalk," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    7. Meng Zhang & Stephen W. Eichhorn & Brian Zingg & Zizhen Yao & Kaelan Cotter & Hongkui Zeng & Hongwei Dong & Xiaowei Zhuang, 2021. "Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH," Nature, Nature, vol. 598(7879), pages 137-143, October.
    8. Ding, Shoukui & Wang, Ning & Bao, Han & Chen, Bei & Wu, Huagan & Xu, Quan, 2023. "Memristor synapse-coupled piecewise-linear simplified Hopfield neural network: Dynamics analysis and circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Fei & Kong, Xinxin & Yao, Wei & Zhang, Jin & Cai, Shuo & Lin, Hairong & Jin, Jie, 2024. "Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    2. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    3. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Li, Fangyuan & Chen, Zhuguan & Bao, Han & Bai, Lianfa & Bao, Bocheng, 2024. "Chaos and bursting patterns in two-neuron Hopfield neural network and analog implementation," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    5. Zhang, Sen & Li, Yongxin & Lu, Daorong & Li, Chunbiao, 2024. "A novel memristive synapse-coupled ring neural network with countless attractors and its application," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    6. Wang, Chunhua & Luo, Dingwei & Deng, Quanli & Yang, Gang, 2024. "Dynamics analysis and FPGA implementation of discrete memristive cellular neural network with heterogeneous activation functions," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    7. Jiang, Donghua & Njitacke, Zeric Tabekoueng & Long, Guoqiang & Awrejcewicz, Jan & Zheng, Mingwen & Cai, Lei, 2024. "Novel Tabu learning neuron model with variable activation gradient and its application to secure healthcare," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    8. Cheng, Guanghui & Li, Dan & Yao, Yuangen & Gui, Rong, 2023. "Multi-scroll chaotic attractors with multi-wing via oscillatory potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Deng, Quanli & Wang, Chunhua & Lin, Hairong, 2024. "Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    11. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    12. Huang, Keyu & Li, Chunbiao & Cen, Xiaoliang & Chen, Guanrong, 2024. "Constructing chaotic oscillators with memory components," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    13. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Zhang, Jie & Zuo, Jiangang & Wang, Meng & Guo, Yan & Xie, Qinggang & Hou, Jinyou, 2024. "Design and application of multiscroll chaotic attractors based on a novel multi-segmented memristor," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    15. Yann Vanrobaeys & Utsav Mukherjee & Lucy Langmack & Stacy E. Beyer & Ethan Bahl & Li-Chun Lin & Jacob J. Michaelson & Ted Abel & Snehajyoti Chatterjee, 2023. "Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Biamou, Arsene Loic Mbanda & Tamba, Victor Kamdoum & Tagne, François Kapche & Takougang, Armand Cyrille Nzeukou, 2024. "Fractional-order-induced symmetric multi-scroll chaotic attractors and double bubble bifurcations in a memristive coupled Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    17. Cheng, Guanghui & Gui, Rong, 2024. "Understanding Chua system from the perspective of Duffing," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    18. Avcı, İbrahim & Lort, Hüseyin & Tatlıcıoğlu, Buğce E., 2023. "Numerical investigation and deep learning approach for fractal–fractional order dynamics of Hopfield neural network model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    19. Arezou Rahimi & Luis A. Vale-Silva & Maria Fälth Savitski & Jovan Tanevski & Julio Saez-Rodriguez, 2024. "DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Wu, Huagan & Gu, Jinxiang & Wang, Ning & Chen, Mo & Xu, Quan, 2025. "Spiking and bursting activities in an NLAM-based CNN cell," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.