IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925001468.html
   My bibliography  Save this article

Noise-induced extreme events in Hodgkin–Huxley neural networks

Author

Listed:
  • Boaretto, Bruno R.R.
  • Macau, Elbert E.N.
  • Masoller, Cristina

Abstract

Extreme events are rare, large-scale deviations from typical system behavior that can occur in nonlinear dynamical systems. In this study, we explore the emergence of extreme events within a network of identical stochastic Hodgkin–Huxley neurons with mean-field coupling. The neurons are exposed to uncorrelated noise, which introduces stochastic electrical fluctuations that influence their spiking activity. Analyzing the variations in the amplitude of the mean field, we observe a smooth transition from small-amplitude, out-of-sync activity to synchronized spiking activity as the coupling parameter increases, while an abrupt transition occurs with increasing noise intensity. However, beyond a certain threshold, the coupling abruptly suppresses the spiking activity of the network. Our analysis reveals that the influence of noise combined with neuronal coupling near the abrupt transitions can trigger cascades of synchronized spiking activity, identified as extreme events. The analysis of the entropy of the mean field allows us to detect the parameter region where these events occur. We characterize the statistics of these events and find that, as the network size increases, the parameter range where they occur decreases significantly. Our findings shed light on the mechanisms driving extreme events in neural networks and how noise and neural coupling shape collective behavior.

Suggested Citation

  • Boaretto, Bruno R.R. & Macau, Elbert E.N. & Masoller, Cristina, 2025. "Noise-induced extreme events in Hodgkin–Huxley neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001468
    DOI: 10.1016/j.chaos.2025.116133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Andreev, Andrey V. & Makarov, Vladimir V. & Runnova, Anastasija E. & Pisarchik, Alexander N. & Hramov, Alexander E., 2018. "Coherence resonance in stimulated neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 80-85.
    2. Hao, Yinghang & Gong, Yubing & Wang, Li & Ma, Xiaoguang & Yang, Chuanlu, 2011. "Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 260-268.
    3. Batista, C.A.S. & Batista, A.M. & de Pontes, J.C.A. & Lopes, S.R. & Viana, R.L., 2009. "Bursting synchronization in scale-free networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2220-2225.
    4. Faci-Lázaro, Sergio & Soriano, Jordi & Mazo, Juan José & Gómez-Gardeñes, Jesús, 2023. "Dynamical and topological conditions triggering the spontaneous activation of Izhikevich neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    5. Niklas Boers & Bedartha Goswami & Aljoscha Rheinwalt & Bodo Bookhagen & Brian Hoskins & Jürgen Kurths, 2019. "Complex networks reveal global pattern of extreme-rainfall teleconnections," Nature, Nature, vol. 566(7744), pages 373-377, February.
    6. Ram, J.S. & Muni, S.S. & Shepelev, I.A., 2024. "Spatiotemporal patterns in a 2D lattice of Hindmarsh–Rose neurons induced by high-amplitude pulses," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    7. Farrera-Megchun, Agustin & Padilla-Longoria, Pablo & Santos, Gerardo J. Escalera & Espinal-Enríquez, Jesús & Bernal-Jaquez, Roberto, 2024. "Neuron configuration enhances the synchronization dynamics in ring networks with heterogeneous firing patterns," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    8. D. R. Solli & C. Ropers & P. Koonath & B. Jalali, 2007. "Optical rogue waves," Nature, Nature, vol. 450(7172), pages 1054-1057, December.
    9. Efimova, Natalia & Tyukin, Ivan & Kazantsev, Victor, 2024. "Spiking phase control in synaptically coupled Hodgkin–Huxley neurons," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gosak, Marko & Markovič, Rene & Marhl, Marko, 2012. "The role of neural architecture and the speed of signal propagation in the process of synchronization of bursting neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2764-2770.
    2. Li, Liu-Qing & Gao, Yi-Tian & Yu, Xin & Ding, Cui-Cui & Wang, Dong, 2022. "Bilinear form and nonlinear waves of a (1+1)-dimensional generalized Boussinesq equation for the gravity waves over water surface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 494-508.
    3. Li, Li & Yu, Fajun, 2025. "Some mixed soliton wave interaction patterns and stabilities for Rabi-coupled nonlocal Gross–Pitaevskii equations," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    4. Konstantinos Spiliotis & Konstantinos Voudouris & Harris Vangelis & Mike Spiliotis, 2025. "Analysis of Annual Drought Episodes Using Complex Networks," Sustainability, MDPI, vol. 17(4), pages 1-17, February.
    5. Zhang, Yu & Li, Chuanzhong & He, Jingsong, 2016. "Rogue waves in a resonant erbium-doped fiber system with higher-order effects," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 826-841.
    6. Kaiwen Li & Ming Wang & Kai Liu, 2021. "The Study on Compound Drought and Heatwave Events in China Using Complex Networks," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    7. Seadawy, Aly R. & Ali, Safdar & Rizvi, Syed T.R., 2022. "On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Bashkirtseva, Irina & Ryashko, Lev, 2022. "Stochastic generation and shifts of phantom attractors in the 2D Rulkov model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Xi-zhong Liu & Zhi-Mei Lou & Xian-Min Qian & Lamine Thiam, 2019. "A Study on Lump and Interaction Solutions to a (3 + 1)-Dimensional Soliton Equation," Complexity, Hindawi, vol. 2019, pages 1-12, October.
    11. Reis, A.S. & Brugnago, E.L. & Viana, R.L. & Batista, A.M. & Iarosz, K.C. & Ferrari, F.A.S. & Caldas, I.L., 2023. "The role of the fitness model in the suppression of neuronal synchronous behavior with three-stage switching control in clustered networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    12. Alexandra Völkel & Luca Nimmesgern & Adam Mielnik-Pyszczorski & Timo Wirth & Georg Herink, 2022. "Intracavity Raman scattering couples soliton molecules with terahertz phonons," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    13. Zhang, Yi & Sun, YanBo & Xiang, Wen, 2015. "The rogue waves of the KP equation with self-consistent sources," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 204-213.
    14. Ryashko, Lev, 2025. "How colored noise impacts excitation and suppression of calcium oscillations: Stochastic sensitivity analysis," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    15. Jiang, Yan & Qu, Qi-Xing, 2021. "Solitons and breathers for a generalized nonlinear Schrödinger equation via the binary Bell polynomials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 57-68.
    16. Bo Ren & Ji Lin & Zhi-Mei Lou, 2019. "A New Nonlinear Equation with Lump-Soliton, Lump-Periodic, and Lump-Periodic-Soliton Solutions," Complexity, Hindawi, vol. 2019, pages 1-10, June.
    17. Guo, Yitong & Wang, Chunni & Ma, Jun, 2024. "Jointed pendulums driven by a neural circuit, electromechanical arm model approach," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    18. Wang, Haotian & Li, Xin & Zhou, Qin & Liu, Wenjun, 2023. "Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    19. Yifei Yang & Sichen Tao & Haichuan Yang & Zijing Yuan & Zheng Tang, 2023. "Dynamic Complex Network, Exploring Differential Evolution Algorithms from Another Perspective," Mathematics, MDPI, vol. 11(13), pages 1-16, July.
    20. Liu, Chen & Wang, Jiang & Yu, Haitao & Deng, Bin & Wei, Xile & Sun, Jianbing & Chen, Yingyuan, 2013. "The effects of time delay on the synchronization transitions in a modular neuronal network with hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 47(C), pages 54-65.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.