IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v193y2025ics0960077925001377.html
   My bibliography  Save this article

Bimodal distribution of path multiplicity in random networks

Author

Listed:
  • Dong, Yu
  • Deng, Ye
  • Wu, Jun

Abstract

Erdös–Rényi (ER) random networks have long been central to the study of complex networks, providing foundational insights into network structure and behavior. Despite extensive research on their structural properties, the exploration of path multiplicity in ER random networks — quantifying the number of shortest paths between a random node pair — remains limited. In this paper, we systematically investigate the path multiplicity in ER random networks, including exploring its distribution, average, variance and coefficient of variation through both simulation and analytical approaches. We first observe a bimodal distribution of shortest path amounts between node pairs in ER random networks. As the connection probability p increases, the left part steepens and the right part forms a bell-shaped distribution, gradually separating from the left. The mean and variance of path multiplicity reach their maximum values at approximately p=2/3 and p=5/6, respectively, while the coefficient of variation peaks at low p values and then increases monotonically before p=1. These statistical properties highlight significant variations in path multiplicity under different connection probabilities. Furthermore, we examine the behavior of other network metrics in ER random networks, including resistance distance, efficiency, and natural connectivity, and identify distinct differences compared to path multiplicity. These results shed new light on the intricate structural patterns that emerge in ER random networks and provide a deeper quantitative understanding of the factors that govern shortest path multiplicity, contributing to the broader study of random network theory.

Suggested Citation

  • Dong, Yu & Deng, Ye & Wu, Jun, 2025. "Bimodal distribution of path multiplicity in random networks," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001377
    DOI: 10.1016/j.chaos.2025.116124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925001377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.