IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v190y2025ics0960077924013274.html
   My bibliography  Save this article

Random attractors for fractional stochastic reaction–diffusion systems with fractional Brownian motion

Author

Listed:
  • Yuan, Xiaolin
  • Yu, Yongguang
  • Ren, Guojian

Abstract

Fractional stochastic reaction–diffusion systems involving fractional Brownian motion (fBm) provide a comprehensive modeling framework for studying complex physical and biological phenomena. In this study, we investigate the dynamic behavior of solutions to fractional stochastic reaction–diffusion systems with fBm defined on Rn. Firstly, we establish the existence and uniqueness of solutions to the fractional stochastic reaction–diffusion systems with fBm. We also obtain uniform estimates for the solutions on average. Furthermore, we construct a mean random dynamical system based on the derived solutions. Finally, we prove the existence and uniqueness of weak pullback mean random attractors. The results of our investigation contribute to a deeper understanding of the complexities involved in reaction–diffusion processes, specifically considering the effect of fBm with long-range dependence and self-similarity properties. Additionally, our findings have broader applications, particularly in areas such as analyzing the dynamic behavior of complex systems and biological models.

Suggested Citation

  • Yuan, Xiaolin & Yu, Yongguang & Ren, Guojian, 2025. "Random attractors for fractional stochastic reaction–diffusion systems with fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924013274
    DOI: 10.1016/j.chaos.2024.115775
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924013274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sweilam, N.H. & AL - Mekhlafi, S.M. & Baleanu, D., 2021. "A hybrid stochastic fractional order Coronavirus (2019-nCov) mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Hong Lu & Linlin Wang & Mingji Zhang, 2022. "Dynamics of Fractional Stochastic Ginzburg–Landau Equation Driven by Nonlinear Noise," Mathematics, MDPI, vol. 10(23), pages 1-36, November.
    3. Xu, Changjin & Farman, Muhammad, 2023. "Qualitative and Ulam–Hyres stability analysis of fractional order cancer-immune model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Gong, Li-Hua & Luo, Hui-Xin & Wu, Rou-Qing & Zhou, Nan-Run, 2022. "New 4D chaotic system with hidden attractors and self-excited attractors and its application in image encryption based on RNG," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    5. El-Nabulsi, Rami Ahmad & Anukool, Waranont, 2023. "The paradigm of quantum cosmology through Dunkl fractional Laplacian operators and fractal dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Chakraborty, Arkaprovo & Veeresha, P., 2024. "Investigating the dynamics, synchronization and control of chaos within a transformed fractional Samardzija–Greller framework," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Zhang, Wei & Ni, Jinbo, 2023. "Study on a new p-Laplacian fractional differential model generated by instantaneous and non-instantaneous impulsive effects," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Mondal, Argha & Kaslik, Eva & Sharma, Sanjeev K. & Chakraborty, Chinmay & Aziz-Alaoui, M.A., 2024. "Emergent dynamics in fractional-order Wilson–Cowan neural network systems," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    9. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    10. Akinlar, M.A. & Inc, Mustafa & Gómez-Aguilar, J.F. & Boutarfa, B., 2020. "Solutions of a disease model with fractional white noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Gao & Shuaiqiang Liu & Cornelis W. Oosterlee & Nico M. Temme, 2022. "Solution of integrals with fractional Brownian motion for different Hurst indices," Papers 2203.02323, arXiv.org, revised Mar 2022.
    2. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    3. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    4. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    5. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    6. Carsten H. Chong & Viktor Todorov, 2023. "Asymptotic Expansions for High-Frequency Option Data," Papers 2304.12450, arXiv.org, revised Feb 2025.
    7. Zhu, Qinwen & Diao, Xundi & Wu, Chongfeng, 2023. "Volatility forecast with the regularity modifications," Finance Research Letters, Elsevier, vol. 58(PA).
    8. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
    9. Sigurd Emil Rømer & Rolf Poulsen, 2020. "How Does the Volatility of Volatility Depend on Volatility?," Risks, MDPI, vol. 8(2), pages 1-18, June.
    10. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    11. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    12. Mehrdoust, Farshid & Noorani, Idin & Hamdi, Abdelouahed, 2023. "Two-factor Heston model equipped with regime-switching: American option pricing and model calibration by Levenberg–Marquardt optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 660-678.
    13. Wang, Qiyu & Chong, Terence Tai-Leung, 2021. "Factor pricing of cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    14. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
    15. Jiangze Du & Shaojie Lai & Kin Keung Lai & Shifei Zhou, 2021. "A novel term structure stochastic model with adaptive correlation for trend analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5485-5498, October.
    16. Martin Keller-Ressel & Martin Larsson & Sergio Pulido, 2018. "Affine Rough Models," Papers 1812.08486, arXiv.org.
    17. Hiroyuki Kawakatsu, 2022. "Modeling Realized Variance with Realized Quarticity," Stats, MDPI, vol. 5(3), pages 1-25, September.
    18. Xiyue Han & Alexander Schied, 2021. "The roughness exponent and its model-free estimation," Papers 2111.10301, arXiv.org, revised Jun 2024.
    19. Zhang, Sumei & Gao, Xiong, 2019. "An asymptotic expansion method for geometric Asian options pricing under the double Heston model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 1-9.
    20. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924013274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.