IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v190y2025ics0960077924012980.html
   My bibliography  Save this article

Finding important nodes via improved cycle ratio method

Author

Listed:
  • Huang, Yihao
  • Peng, Weijun
  • Zheng, Muhua
  • Zhao, Ming
  • Zhao, Manrui
  • Zhang, Yicheng

Abstract

The cycle ratio method is designed to define the importance of nodes by the cycles of a network, and a set of important nodes identified by this method has superior control performance than by degree centrality, H-index, and coreness methods in several aspects such as spreading, percolation, and pinning control. Unfortunately, the method is not precise enough to portray the importance of the nodes, so in this paper, we improve the cycle ratio method by reducing the impact of four and larger cycles and adding the effects of the tree structure. Through numerical simulations on several real networks, we find that the set of important nodes discovered by the improved cycle ratio method is more dispersed and has better control in all three aspects of spreading, percolation, and pinning control than the original cycle ratio method. The work in this paper makes it more accurate to use the cycle structure to find a set of important nodes in a network and provides new ideas for a deeper understanding of the effects of local structure on the importance of the nodes.

Suggested Citation

  • Huang, Yihao & Peng, Weijun & Zheng, Muhua & Zhao, Ming & Zhao, Manrui & Zhang, Yicheng, 2025. "Finding important nodes via improved cycle ratio method," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924012980
    DOI: 10.1016/j.chaos.2024.115746
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    2. Pablo M. Gleiser & Leon Danon, 2003. "Community Structure In Jazz," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 565-573.
    3. Linyuan Lü & Tao Zhou & Qian-Ming Zhang & H. Eugene Stanley, 2016. "The H-index of a network node and its relation to degree and coreness," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    4. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    5. Korn, A. & Schubert, A. & Telcs, A., 2009. "Lobby index in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2221-2226.
    6. Wang, Xiao Fan & Chen, Guanrong, 2002. "Pinning control of scale-free dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 310(3), pages 521-531.
    7. Tianlong Fan & Hao Li & Xiao-Long Ren & Shuqi Xu & Youzhao Gou & Linyuan Lü, 2021. "The rise and fall of countries on world trade web: A network perspective," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 32(08), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Yan-Li & Zhou, Tao, 2017. "Fast asynchronous updating algorithms for k-shell indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 524-531.
    2. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    3. Wen Zhou & Jiayi Gu & Yifan Jia, 2018. "h-Index-based link prediction methods in citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 381-390, October.
    4. Xiaoyu Chen & Yang Liu & Zhenxin Cao & Xiaopeng Li & Jinde Cao, 2024. "H-core decomposition for directed networks and its application," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 6571-6596, November.
    5. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    6. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
    7. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    8. Zhu, Xiaoyu & Hao, Rongxia, 2024. "Identifying influential nodes in social networks via improved Laplacian centrality," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    9. Hesamipour, Sajjad & Balafar, Mohammad Ali, 2019. "A new method for detecting communities and their centers using the Adamic/Adar Index and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. Xu, Shuqi & Mariani, Manuel Sebastian & Lü, Linyuan & Medo, Matúš, 2020. "Unbiased evaluation of ranking metrics reveals consistent performance in science and technology citation data," Journal of Informetrics, Elsevier, vol. 14(1).
    11. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Liu, Qiang & Zhu, Yu-Xiao & Jia, Yan & Deng, Lu & Zhou, Bin & Zhu, Jun-Xing & Zou, Peng, 2018. "Leveraging local h-index to identify and rank influential spreaders in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 379-391.
    13. Park, Ji Hwan & Chang, Woojin & Song, Jae Wook, 2020. "Link prediction in the Granger causality network of the global currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    14. Liu, Min & Ma, Yue & Cao, Zhulou & Qi, Xingqin, 2018. "ECP-Rank: A novel vital node identifying mechanism combining PageRank with link prediction index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1183-1191.
    15. Mishra, Shivansh & Singh, Shashank Sheshar & Kumar, Ajay & Biswas, Bhaskar, 2022. "ELP: Link prediction in social networks based on ego network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    16. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    17. Sun, Peng Gang & Che, Wanping & Quan, Yining & Wang, Shuzhen & Miao, Qiguang, 2022. "Random networks are heterogeneous exhibiting a multi-scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    18. Liao, Hao & Zeng, An & Zhang, Yi-Cheng, 2015. "Predicting missing links via correlation between nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 216-223.
    19. Kim, Jongkwang & Wilhelm, Thomas, 2008. "What is a complex graph?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2637-2652.
    20. Liu, Shuxin & Ji, Xinsheng & Liu, Caixia & Bai, Yi, 2017. "Extended resource allocation index for link prediction of complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 174-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924012980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.