IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v190y2025ics0960077924012955.html
   My bibliography  Save this article

Interaction of mixed localized waves in optical media with higher-order dispersion

Author

Listed:
  • Kengne, Emmanuel
  • Lakhssassi, Ahmed
  • Liu, WuMing

Abstract

This work focuses on the interaction of mixed localized waves in optical media with higher-order dispersions whose dynamics are governed by a modified cubic–quintic nonlinear Schrödinger equation. For proving the integrability of this model equation, we start by building a Lax pair and an infinitely many conservation laws. Applying the linear stability analysis method, the baseband modulational instability of a stationary continuous wave solution is investigated. Studying the baseband modulational instability phenomenon, we show that the optical loss influences the instability gain spectrum: the stationary continuous wave solution under consideration satisfies the condition of the baseband modulational instability only when the optical loss is neglected. According to the generalized perturbation (n,p−n)–fold Darboux transformation, the existence and properties of the parametric first-, second-, and third-order mixed localized wave solutions for the model equation are constructed when the loss term is neglected. The built solutions helping, we engineer in optical media with higher-order dispersions new nonlinear structures showing interactions between various kinds of nonlinear waves such as multi-peak bright/dark solitons, bright/dark breathers, bright/dark rogue waves, as well as periodic waves. Graphical illustrations are then used for investigating main characteristics of the mixed localized waves propagating on vanishing/nonvanishing continuous wave background. Interestingly, our study produces nonlocal breathers in which the entire optical field oscillates periodically in conjunction with the central local oscillation during transmission. Investigating the effects of various parameters on the nonlinear structures resulting from built mixed localized wave solutions of the model equation, we show that parameter of the fourth-order dispersion can be used to describe wave compression. Also, we show that the model parameters are useful for controlling the optical waves in lossless optical media with both higher-order dispersion whose dynamics are governed by the model equation under consideration. Our results are useful for investigating mixed localized waves in nonlinear metamaterials with cubic–quintic nonlinearity, detuning intermodal dispersion, self steepening and self-frequency effects, and nonlinear third- and fourth-order dispersions.

Suggested Citation

  • Kengne, Emmanuel & Lakhssassi, Ahmed & Liu, WuMing, 2025. "Interaction of mixed localized waves in optical media with higher-order dispersion," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924012955
    DOI: 10.1016/j.chaos.2024.115743
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115743?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kengne, Emmanuel & Liu, WuMing, 2024. "Mixed localized matter wave solitons in Bose–Einstein condensates with time-varying interatomic interaction and a time-varying complex harmonic trapping potential," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Seadawy, Aly R. & Arshad, Muhammad & Lu, Dianchen, 2020. "The weakly nonlinear wave propagation theory for the Kelvin-Helmholtz instability in magnetohydrodynamics flows," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Seadawy, Aly R., 2016. "Stability analysis solutions for nonlinear three-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation in a magnetized electron–positron plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 44-51.
    4. Tariq, Kalim U. & Wazwaz, Abdul-Majid & Javed, Rizwan, 2023. "Construction of different wave structures, stability analysis and modulation instability of the coupled nonlinear Drinfel’d–Sokolov–Wilson model," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Kengne, Emmanuel, 2024. "Engineering of chirp localized waves in optical media with positive group velocity dispersion," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    6. Bolei Deng & Pai Wang & Qi He & Vincent Tournat & Katia Bertoldi, 2018. "Metamaterials with amplitude gaps for elastic solitons," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seadawy, Aly R. & Ali, Safdar & Rizvi, Syed T.R., 2022. "On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Seadawy, Aly R. & Iqbal, Mujahid & Lu, Dianchen, 2020. "Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg–de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    3. Lei Wu & Damiano Pasini, 2024. "Zero modes activation to reconcile floppiness, rigidity, and multistability into an all-in-one class of reprogrammable metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Seadawy, Aly R. & Rizvi, Syed T.R. & Sohail, Muhammad & Ali, Kashif, 2022. "Nonlinear model under anomalous dispersion regime: Chirped periodic and solitary waves," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    5. Eric Cereceda-López & Alexander P. Antonov & Artem Ryabov & Philipp Maass & Pietro Tierno, 2023. "Overcrowding induces fast colloidal solitons in a slowly rotating potential landscape," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Rubayyi T. Alqahtani & Melike Kaplan, 2024. "Analyzing Soliton Solutions of the Extended (3 + 1)-Dimensional Sakovich Equation," Mathematics, MDPI, vol. 12(5), pages 1-10, February.
    7. Bashir, Azhar & Seadawy, Aly R. & Ahmed, Sarfaraz & Rizvi, Syed T.R., 2022. "The Weierstrass and Jacobi elliptic solutions along with multiwave, homoclinic breather, kink-periodic-cross rational and other solitary wave solutions to Fornberg Whitham equation," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    8. Farman, Muhammad & Sarwar, Rabia & Akgul, Ali, 2023. "Modeling and analysis of sustainable approach for dynamics of infections in plant virus with fractal fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    9. Weijian Jiao & Hang Shu & Vincent Tournat & Hiromi Yasuda & Jordan R. Raney, 2024. "Phase transitions in 2D multistable mechanical metamaterials via collisions of soliton-like pulses," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Yang, Feifei & Song, Xinlin & Yu, Zhenhua, 2024. "Dynamics of a functional neuron model with double membranes," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    11. El-Sheikh, Mohamed M.A. & Seadawy, Aly R. & Ahmed, Hamdy M. & Arnous, Ahmed H. & Rabie, Wafaa B., 2020. "Dispersive and propagation of shallow water waves as a higher order nonlinear Boussinesq-like dynamical wave equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    12. Iqbal, Muhammad S. & Seadawy, Aly R. & Baber, Muhammad Z. & Qasim, Muhammad, 2022. "Application of modified exponential rational function method to Jaulent–Miodek system leading to exact classical solutions," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    13. Iqbal, Muhammad S. & Seadawy, Aly R. & Baber, Muhammad Z., 2022. "Demonstration of unique problems from Soliton solutions to nonlinear Selkov–Schnakenberg system," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    14. Haitham Qawaqneh & Jalil Manafian & Mohammed Alharthi & Yasser Alrashedi, 2024. "Stability Analysis, Modulation Instability, and Beta-Time Fractional Exact Soliton Solutions to the Van der Waals Equation," Mathematics, MDPI, vol. 12(14), pages 1-23, July.
    15. Abdulrahman Alomair & Abdulaziz S. Al Naim & Ahmet Bekir, 2024. "Exploration of Soliton Solutions to the Special Korteweg–De Vries Equation with a Stability Analysis and Modulation Instability," Mathematics, MDPI, vol. 13(1), pages 1-17, December.
    16. Haitham Qawaqneh & Khalil Hadi Hakami & Ali Altalbe & Mustafa Bayram, 2024. "The Discovery of Truncated M-Fractional Exact Solitons and a Qualitative Analysis of the Generalized Bretherton Model," Mathematics, MDPI, vol. 12(17), pages 1-17, September.
    17. Sağlam Özkan, Yeşim & Yaşar, Emrullah, 2021. "Breather-type and multi-wave solutions for (2+1)-dimensional nonlocal Gardner equation," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    18. Seadawy, Aly R. & Nasreen, Naila & Lu, Dianchen & Arshad, Muhammad, 2020. "Arising wave propagation in nonlinear media for the (2+1)-dimensional Heisenberg ferromagnetic spin chain dynamical model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    19. Kengne, Emmanuel, 2024. "Engineering of chirp localized waves in optical media with positive group velocity dispersion," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    20. Li, Yan & Hao, Xiazhi & Yao, Ruoxia & Xia, Yarong & Shen, Yali, 2023. "Nonlinear superposition among lump soliton, stripe solitons and other nonlinear localized waves of the (2+1)-dimensional cpKP-BKP equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 57-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924012955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.