IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011402.html
   My bibliography  Save this article

PMNN: Physical model-driven neural network for solving time-fractional differential equations

Author

Listed:
  • Ma, Zhiying
  • Hou, Jie
  • Zhu, Wenhao
  • Peng, Yaxin
  • Li, Ying

Abstract

In this paper, an innovative Physical Model-driven Neural Network (PMNN) method is proposed to solve time-fractional differential equations. It establishes a temporal iteration scheme based on physical model-driven neural networks which effectively combines deep neural networks (DNNs) with interpolation approximation of fractional derivatives. Specifically, once the fractional differential operator is discretized, DNNs are employed as a bridge to integrate interpolation approximation techniques with differential equations. On the basis of this integration, we construct a neural-based iteration scheme. Subsequently, by training DNNs to learn this temporal iteration scheme, approximate solutions to the differential equations can be obtained. The proposed method aims to preserve the intrinsic physical information within the equations as far as possible. It fully utilizes the powerful fitting capability of neural networks while maintaining the efficiency of the difference schemes for fractional differential equations. The experimental results show that the PMNN maintains precision comparable to traditional methods while exhibiting superior computational efficiency. This implies the potential of PMNN in addressing large-scale problems. Moreover, when considering both error and convergence rate, PMNN consistently outperforms fPINN. Additionally, the performance of PMNN on L2−1σ surpasses that on L1 in an overall comparison. The data and code can be found at https://github.com/DouMiao1226/PMNN.

Suggested Citation

  • Ma, Zhiying & Hou, Jie & Zhu, Wenhao & Peng, Yaxin & Li, Ying, 2023. "PMNN: Physical model-driven neural network for solving time-fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011402
    DOI: 10.1016/j.chaos.2023.114238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.