IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v172y2023ics0960077923004496.html
   My bibliography  Save this article

An innovative approach based on optimization for the determination of initial conditions of continuous-time chaotic system as a random number generator

Author

Listed:
  • Yildirim, Gokce
  • Tanyildizi, Erkan

Abstract

Security has been one of the important problems in the processing, storage and transmission of information. The transfer of information to virtual environments with technological developments has made it necessary to examine the concept of security with different dimensions. Data security can be achieved to a great extent by using randomly generated unpredictable bit sequences in encryption. In this study, approximately 1,000,000 random bits were generated for use in computer science. The Mode2(x) method and the unpredictable nature of chaotic systems are used for random number generation. With this hybrid structure used in the study, it is aimed to gain a different perspective to future studies. However, it is known that the sensitivity of chaotic systems to initial conditions is very high. The most important contribution of the study to the literature is that the initial conditions were determined using optimization algorithms. In this study, Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) were used to calculate the initial conditions. To the authors' knowledge, this is the first study to use optimization to determine initial conditions for continuous-time chaotic systems. NIST SP 800-22 Statistical Test Suite was used to analyze the reliability of the generated random bits. It was seen that the proposed method passed all statistical tests successfully (100 %). Histogram and floating frequency analysis were used for the analysis of random numbers obtained from the generated bits. Histogram plots showed uniform distribution. It is seen that there is a homogeneous distribution in the sliding frequency analysis.

Suggested Citation

  • Yildirim, Gokce & Tanyildizi, Erkan, 2023. "An innovative approach based on optimization for the determination of initial conditions of continuous-time chaotic system as a random number generator," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004496
    DOI: 10.1016/j.chaos.2023.113548
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923004496
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Çavuşoğlu, Ünal & Kaçar, Sezgin & Pehlivan, Ihsan & Zengin, Ahmet, 2017. "Secure image encryption algorithm design using a novel chaos based S-Box," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 92-101.
    2. Yu, Yongguang & Li, Han-Xiong & Wang, Sha & Yu, Junzhi, 2009. "Dynamic analysis of a fractional-order Lorenz chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1181-1189.
    3. Ying Sun & Yuelin Gao & Xudong Shi, 2019. "Chaotic Multi-Objective Particle Swarm Optimization Algorithm Incorporating Clone Immunity," Mathematics, MDPI, vol. 7(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Remus-Daniel Ene & Nicolina Pop, 2023. "Approximate Closed-Form Solutions for a Class of 3D Dynamical Systems Involving a Hamilton–Poisson Part," Mathematics, MDPI, vol. 11(23), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanshuo Qiu & Xiangzi Zhang & Huaixiao Yue & Jizhao Liu, 2023. "A Novel Eighth-Order Hyperchaotic System and Its Application in Image Encryption," Mathematics, MDPI, vol. 11(19), pages 1-29, September.
    2. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    3. Li, Zengshan & Chen, Diyi & Ma, Mengmeng & Zhang, Xinguang & Wu, Yonghong, 2017. "Feigenbaum's constants in reverse bifurcation of fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 116-123.
    4. Leng, Xiangxin & Gu, Shuangquan & Peng, Qiqi & Du, Baoxiang, 2021. "Study on a four-dimensional fractional-order system with dissipative and conservative properties," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. Silva-Juárez, Alejandro & Tlelo-Cuautle, Esteban & de la Fraga, Luis Gerardo & Li, Rui, 2021. "Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    6. Kamal, F.M. & Elsonbaty, A. & Elsaid, A., 2021. "A novel fractional nonautonomous chaotic circuit model and its application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Trujillo-Toledo, D.A. & López-Bonilla, O.R. & García-Guerrero, E.E. & Tlelo-Cuautle, E. & López-Mancilla, D. & Guillén-Fernández, O. & Inzunza-González, E., 2021. "Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    8. Shukla, Manoj Kumar & Sharma, B.B., 2017. "Backstepping based stabilization and synchronization of a class of fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 274-284.
    9. Deepika, Deepika & Kaur, Sandeep & Narayan, Shiv, 2018. "Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 196-203.
    10. Moreira Bezerra, João Inácio & Valduga de Almeida Camargo, Vinícius & Molter, Alexandre, 2021. "A new efficient permutation-diffusion encryption algorithm based on a chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    11. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    12. Sahoo, Shilalipi & Roy, Binoy Krishna, 2022. "Design of multi-wing chaotic systems with higher largest Lyapunov exponent," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    13. Runlong Peng & Cuimei Jiang & Rongwei Guo, 2021. "Partial Anti-Synchronization of the Fractional-Order Chaotic Systems through Dynamic Feedback Control," Mathematics, MDPI, vol. 9(7), pages 1-13, March.
    14. Johan M. Bogoya & Andrés Vargas & Oliver Schütze, 2019. "The Averaged Hausdorff Distances in Multi-Objective Optimization: A Review," Mathematics, MDPI, vol. 7(10), pages 1-35, September.
    15. Rongwei Guo & Yaru Zhang & Cuimei Jiang, 2021. "Synchronization of Fractional-Order Chaotic Systems with Model Uncertainty and External Disturbance," Mathematics, MDPI, vol. 9(8), pages 1-12, April.
    16. Saha, Rahul & G, Geetha, 2017. "Symmetric random function generator (SRFG): A novel cryptographic primitive for designing fast and robust algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 371-377.
    17. Xiong Wang & Akif Akgul & Sezgin Kacar & Viet-Thanh Pham, 2017. "Multimedia Security Application of a Ten-Term Chaotic System without Equilibrium," Complexity, Hindawi, vol. 2017, pages 1-10, November.
    18. Yu, Jinwei & Xie, Wei & Zhong, Zhenyu & Wang, Huan, 2022. "Image encryption algorithm based on hyperchaotic system and a new DNA sequence operation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Karakaya, Barış & Gülten, Arif & Frasca, Mattia, 2019. "A true random bit generator based on a memristive chaotic circuit: Analysis, design and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 143-149.
    20. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.