IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip2s096007792201061x.html
   My bibliography  Save this article

Promotion of cooperation mechanism on the stability of delay-induced host-generalist parasitoid model

Author

Listed:
  • Ye, Yong
  • Zhao, Yi
  • Zhou, Jiaying

Abstract

Hunting cooperation widely exists in biological systems, which increases the possibility of the encounter between prey and predator populations. It is worth noting that predators are often divided into specialists and generalists. The research on considering cooperation mechanism in the specialist predator–prey model has received extensive attention. However, there is few attentions on the generalist predator–prey model. In this paper, we consider the classical delay-induced host-generalist parasitoid model to determine the impact of such a cooperation mechanism. Specifically, the existence and stability of the equilibria are studied without considering the delay factor. It is clearly proved that the system without delay is a stable system, where the cooperation mechanism will not cause instability. Further, to explore the potential role of the cooperation mechanism in the delay-induced system, we emphasize the dynamical variation induced by delay. We, therefore, investigate the underlying bifurcation properties under different cases, where the direction of Hopf bifurcation and stability of the periodic solutions are determined by the normal form theory and the center manifold theorem. Interestingly, a series of dynamical changes occur in the population, including periodic oscillation, irregular oscillation, and chaotic attractor when the double delays are introduced in both populations. Then through the numerical experiments, we examine the impacts of cooperation levels on the dynamic properties. Hence, it is conclusive that the cooperation mechanism will inhibit the generation of complex phenomena in the host-generalist parasitoid system, thereby promoting the stability of the biological system. The present study puts insights into the mechanism of predator cooperation in a more straightforward and practical manner.

Suggested Citation

  • Ye, Yong & Zhao, Yi & Zhou, Jiaying, 2022. "Promotion of cooperation mechanism on the stability of delay-induced host-generalist parasitoid model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s096007792201061x
    DOI: 10.1016/j.chaos.2022.112882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792201061X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Baoxiang & Cai, Yongli & Wang, Bingxian & Wang, Weiming, 2019. "Pattern formation in a reaction–diffusion parasite–host model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 732-740.
    2. Djilali, Salih & Cattani, Carlo, 2021. "Patterns of a superdiffusive consumer-resource model with hunting cooperation functional response," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Maria Francesca Carfora & Isabella Torcicollo, 2022. "Traveling Band Solutions in a System Modeling Hunting Cooperation," Mathematics, MDPI, vol. 10(13), pages 1-11, July.
    4. Wang, Shufan & Tang, Haopeng & Ma, Zhihui, 2021. "Hopf bifurcation of a multiple-delayed predator–prey system with habitat complexity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 1-23.
    5. Vishwakarma, Krishnanand & Sen, Moitri, 2021. "Role of Allee effect in prey and hunting cooperation in a generalist predator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 622-640.
    6. Salih Djilali & Soufiane Bentout & Anwar Zeb & Tareq Saeed, 2022. "Global Stability Of Hybrid Smoking Model With Nonlocal Diffusion," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(08), pages 1-13, December.
    7. Sabbar, Yassine & Kiouach, Driss & Rajasekar, S.P. & El-idrissi, Salim El Azami, 2022. "The influence of quadratic Lévy noise on the dynamic of an SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Danyang & Liu, Hua & Zhang, Haotian & Wei, Yumei, 2023. "Influence of multiple delays mechanisms on predator–prey model with Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Lei Shi & Jiaying Zhou & Yong Ye, 2023. "Pattern Formation in a Predator–Prey Model with Allee Effect and Hyperbolic Mortality on Multiplex Networks," Mathematics, MDPI, vol. 11(15), pages 1-15, July.
    3. Zhou, Jiaying & Ye, Yong & Arenas, Alex & Gómez, Sergio & Zhao, Yi, 2023. "Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yuanyuan & Dong, Nan & Liu, Na & Xie, Leilei, 2022. "Spatiotemporal and bifurcation characteristics of a nonlinear prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    2. Hu, Junlang & Zhu, Linhe, 2021. "Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay in both network and non-network environments," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Souna, Fethi & Belabbas, Mustapha & Menacer, Youssaf, 2023. "Complex pattern formations induced by the presence of cross-diffusion in a generalized predator–prey model incorporating the Holling type functional response and generalization of habitat complexity e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 597-618.
    4. Elaiw, A.M. & Alsaedi, A.J. & Hobiny, A.D. & Aly, S., 2023. "Stability of a delayed SARS-CoV-2 reactivation model with logistic growth and adaptive immune response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    5. Sabbar, Yassine & Din, Anwarud & Kiouach, Driss, 2023. "Influence of fractal–fractional differentiation and independent quadratic Lévy jumps on the dynamics of a general epidemic model with vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    6. Luo, Yantao & Zhang, Long & Zheng, Tingting & Teng, Zhidong, 2019. "Analysis of a diffusive virus infection model with humoral immunity, cell-to-cell transmission and nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    7. Yassine Sabbar & Asad Khan & Anwarud Din, 2022. "Probabilistic Analysis of a Marine Ecological System with Intense Variability," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    8. Nisar, Kottakkaran Sooppy & Farman, Muhammad & Hincal, Evren & Shehzad, Aamir, 2023. "Modelling and analysis of bad impact of smoking in society with Constant Proportional-Caputo Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s096007792201061x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.