IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip2s0960077922010517.html
   My bibliography  Save this article

Modeling systems with machine learning based differential equations

Author

Listed:
  • García, P.

Abstract

The prediction of behavior in dynamical systems, is frequently associated to the design of models. When a time series obtained from observing the system is available, the task can be performed by designing the model from these observations without additional assumptions or by assuming a preconceived structure in the model, with the help of additional information about the system. In the second case, it is a question of adequately combining theory with observations and subsequently optimizing the mixture.

Suggested Citation

  • García, P., 2022. "Modeling systems with machine learning based differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922010517
    DOI: 10.1016/j.chaos.2022.112872
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922010517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristina O. F. Williams & Benjamin F. Akers, 2023. "Numerical Simulation of the Korteweg–de Vries Equation with Machine Learning," Mathematics, MDPI, vol. 11(13), pages 1-14, June.
    2. Christian Beck & Lukas Gonon & Arnulf Jentzen, 2024. "Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations," Partial Differential Equations and Applications, Springer, vol. 5(6), pages 1-47, December.
    3. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
    4. Zhouzhou Gu & Mathieu Lauri`ere & Sebastian Merkel & Jonathan Payne, 2024. "Global Solutions to Master Equations for Continuous Time Heterogeneous Agent Macroeconomic Models," Papers 2406.13726, arXiv.org.
    5. Beatriz Salvador & Cornelis W. Oosterlee & Remco van der Meer, 2020. "Financial Option Valuation by Unsupervised Learning with Artificial Neural Networks," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    6. Sebastian Jaimungal & Yuri F. Saporito & Max O. Souza & Yuri Thamsten, 2023. "Optimal Trading in Automatic Market Makers with Deep Learning," Papers 2304.02180, arXiv.org.
    7. Choi, So Eun & Jang, Hyun Jin & Lee, Kyungsub & Zheng, Harry, 2021. "Optimal market-Making strategies under synchronised order arrivals with deep neural networks," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    8. Chuhao Sun & Asaf Cohen & James Stokes & Shravan Veerapaneni, 2023. "Quantum-inspired nonlinear Galerkin ansatz for high-dimensional HJB equations," Papers 2311.12239, arXiv.org.
    9. Parand, K. & Aghaei, A.A. & Jani, M. & Ghodsi, A., 2021. "A new approach to the numerical solution of Fredholm integral equations using least squares-support vector regression," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 114-128.
    10. Emmanuil H. Georgoulis & Antonis Papapantoleon & Costas Smaragdakis, 2024. "A deep implicit-explicit minimizing movement method for option pricing in jump-diffusion models," Papers 2401.06740, arXiv.org, revised Mar 2025.
    11. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Papers 2102.09851, arXiv.org, revised Feb 2021.
    12. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    13. Kumar, Rakesh & Dhua, Sudarshan, 2025. "Dynamic analysis of Hashimoto’s Thyroiditis bio-mathematical model using artificial neural network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 235-245.
    14. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    15. Daeyung Gim & Hyungbin Park, 2021. "A deep learning algorithm for optimal investment strategies," Papers 2101.12387, arXiv.org.
    16. Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing Options and Computing Implied Volatilities using Neural Networks," Risks, MDPI, vol. 7(1), pages 1-22, February.
    17. Bastien Baldacci & Joffrey Derchu & Iuliia Manziuk, 2020. "An approximate solution for options market-making in high dimension," Papers 2009.00907, arXiv.org.
    18. Alexandre Pannier & Cristopher Salvi, 2024. "A path-dependent PDE solver based on signature kernels," Papers 2403.11738, arXiv.org, revised Oct 2024.
    19. Marlon Azinovic & Luca Gaegauf & Simon Scheidegger, 2022. "Deep Equilibrium Nets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1471-1525, November.
    20. Donatien Hainaut & Alex Casas, 2024. "Option pricing in the Heston model with physics inspired neural networks," Annals of Finance, Springer, vol. 20(3), pages 353-376, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922010517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.