IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip1s0960077922009614.html
   My bibliography  Save this article

Mock-integrability and stable solitary vortices

Author

Listed:
  • Koike, Yukito
  • Nakamula, Atsushi
  • Nishie, Akihiro
  • Obuse, Kiori
  • Sawado, Nobuyuki
  • Suda, Yamato
  • Toda, Kouichi

Abstract

Localized soliton-like solutions to a (2+1)-dimensional hydro-dynamical evolution equation are studied numerically. The equation is the so-called Williams–Yamagata–Flierl equation, which governs geostrophic fluid in a certain parameter range. Although the equation does not have an integrable structure in the ordinary sense, we find there exist shape-keeping solutions with a very long life in a special background flow and an initial condition. The stability of the localization at the fusion process of two soliton-like objects is also investigated. As for the indicator of the long-term stability of localization, we propose a concept of configurational entropy, which has been introduced in analysis for non-topological solitons in field theories.

Suggested Citation

  • Koike, Yukito & Nakamula, Atsushi & Nishie, Akihiro & Obuse, Kiori & Sawado, Nobuyuki & Suda, Yamato & Toda, Kouichi, 2022. "Mock-integrability and stable solitary vortices," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009614
    DOI: 10.1016/j.chaos.2022.112782
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922009614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Xin-Yi & Guo, Yong-Jiang & Shan, Wen-Rui, 2022. "Taking into consideration an extended coupled (2+1)-dimensional Burgers system in oceanography, acoustics and hydrodynamics," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Yi-Tian Gao & Bo Tian, 2001. "Variable-Coefficient Balancing-Act Algorithm Extended To A Variable-Coefficient Mkp Model For The Rotating Fluids," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(09), pages 1383-1389.
    3. Lee, Chaeyoung & Jeong, Darae & Shin, Jaemin & Li, Yibao & Kim, Junseok, 2014. "A fourth-order spatial accurate and practically stable compact scheme for the Cahn–Hilliard equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 17-28.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaeyoung Lee & Darae Jeong & Junxiang Yang & Junseok Kim, 2020. "Nonlinear Multigrid Implementation for the Two-Dimensional Cahn–Hilliard Equation," Mathematics, MDPI, vol. 8(1), pages 1-23, January.
    2. Triki, Houria & Sun, Yunzhou & Zhou, Qin & Biswas, Anjan & Yıldırım, Yakup & Alshehri, Hashim M., 2022. "Dark solitary pulses and moving fronts in an optical medium with the higher-order dispersive and nonlinear effects," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Singh, Sudhir & Sakkaravarthi, K. & Murugesan, K., 2023. "Lump and soliton on certain spatially-varying backgrounds for an integrable (3+1) dimensional fifth-order nonlinear oceanic wave model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. El-Tantawy, S.A. & Salas, Alvaro H. & Alyousef, Haifa A. & Alharthi, M.R., 2022. "Novel approximations to a nonplanar nonlinear Schrödinger equation and modeling nonplanar rogue waves/breathers in a complex plasma," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    5. Qiming Huang & Junxiang Yang, 2022. "Linear and Energy-Stable Method with Enhanced Consistency for the Incompressible Cahn–Hilliard–Navier–Stokes Two-Phase Flow Model," Mathematics, MDPI, vol. 10(24), pages 1-16, December.
    6. Li, Lingfei & Zhu, Minting & Zheng, Han & Xie, Yingying, 2023. "Non-compatible partially PT symmetric Davey–Stewartson system: Rational and semi-rational solution with nonzero background," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    7. Sinhababu, Arijit & Bhattacharya, Anirban, 2022. "A pseudo-spectral based efficient volume penalization scheme for Cahn–Hilliard equation in complex geometries," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 1-24.
    8. Rao, Jiguang & Mihalache, Dumitru & He, Jingsong & Zhou, Fang, 2023. "Degenerate and non-degenerate vector solitons and their interactions in the two-component long-wave–short-wave model of Newell type," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.