IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922009201.html
   My bibliography  Save this article

New results on T–S fuzzy sampled-data stabilization for switched chaotic systems with its applications

Author

Listed:
  • Vadivel, R.
  • Sabarathinam, S.
  • Wu, Yongbao
  • Chaisena, Kantapon
  • Gunasekaran, Nallappan

Abstract

This study presents a T–S fuzzy-based sampled-data controller for switched chaotic systems. First, we designed the switched-based sampled-data fuzzy controller. Second, a novel time-dependent Lyapunov–Krasovskii functional (LKF) approach with the information of switching signals is proposed, which covers all information of the sampling interval and the time-delay information in the controller, improving the integral inequality, some sufficient conditions are established, which makes the proposed closed-loop system be exponentially stable. Subsequently, the derived conditions are formulated with respect to linear matrix inequalities (LMIs). Meanwhile, the corresponding sampled-data controller gains are designed under the larger sampling interval. Finally, the suggested T–S fuzzy sampled-data controller (TSFSD) is used to demonstrate the usefulness of the approaches in the Lorenz system, Chen system, and Lu system.

Suggested Citation

  • Vadivel, R. & Sabarathinam, S. & Wu, Yongbao & Chaisena, Kantapon & Gunasekaran, Nallappan, 2022. "New results on T–S fuzzy sampled-data stabilization for switched chaotic systems with its applications," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922009201
    DOI: 10.1016/j.chaos.2022.112741
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922009201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112741?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ju H., 2005. "Controlling chaotic systems via nonlinear feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 23(3), pages 1049-1054.
    2. Wang, Yuangan & Yu, Honglin, 2018. "Fuzzy synchronization of chaotic systems via intermittent control," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 154-160.
    3. Park, Ju H., 2005. "On synchronization of unified chaotic systems via nonlinear Control," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 699-704.
    4. Xia, Yude & Wang, Jing & Meng, Bo & Chen, Xiangyong, 2020. "Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    5. Park, Ju H., 2005. "Chaos synchronization of a chaotic system via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 579-584.
    6. Hua Zhang & Heng Liu, 2021. "An Integral Sliding Mode Control of Uncertain Chaotic Systems via Disturbance Observer," Complexity, Hindawi, vol. 2021, pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Yajing & Li, Zhanjie & Xie, Xiangpeng & Yue, Dong, 2023. "Adaptive consensus of uncertain switched nonlinear multi-agent systems under sensor deception attacks," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Yang, Tianqing & Zou, Runmin & Liu, Fang & Liu, Cai & Sidorov, Denis, 2023. "Improved stabilization condition of delayed T-S fuzzy systems via an extended quadratic function negative-determination lemma," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Yongguang, 2008. "Adaptive synchronization of a unified chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 329-333.
    2. Guo, C.X. & Jiang, Q.Y. & Cao, Y.J., 2007. "Controlling chaotic oscillations via nonlinear observer approach," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 1014-1019.
    3. Huang, Cheng-Sea & Lian, Kuang-Yow & Su, Chien-Hsing & Wu, Jinn-Wen, 2008. "Stabilization at almost arbitrary points for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 452-459.
    4. Tarai (Poria), Anindita & Poria, Swarup & Chatterjee, Prasanta, 2009. "Synchronization of generalised linearly bidirectionally coupled unified chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 885-892.
    5. Park, Ju H., 2006. "Chaos synchronization of nonlinear Bloch equations," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 357-361.
    6. Lam, H.K., 2009. "Output-feedback synchronization of chaotic systems based on sum-of-squares approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2624-2629.
    7. Baishya, Chandrali & Premakumari, R.N. & Samei, Mohammad Esmael & Naik, Manisha Krishna, 2023. "Chaos control of fractional order nonlinear Bloch equation by utilizing sliding mode controller," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Park, Ju H., 2005. "Chaos synchronization of a chaotic system via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 579-584.
    9. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Park, Ju H., 2005. "On synchronization of unified chaotic systems via nonlinear Control," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 699-704.
    11. Mahmoud, Gamal M. & Mahmoud, Emad E. & Farghaly, Ahmed A. & Aly, Shaban A., 2009. "Chaotic synchronization of two complex nonlinear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2858-2864.
    12. Yang, Li-Xin & Chu, Yan-Dong & Zhang, Jian-Gang & Li, Xian-Feng & Chang, Ying-Xiang, 2009. "Chaos synchronization in autonomous chaotic system via hybrid feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 214-223.
    13. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "On anti-synchronization of chaotic systems via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 170-179.
    14. Sun, Yeong-Jeu, 2009. "Exponential synchronization between two classes of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2363-2368.
    15. Liu, Yu-An & Tang, Shengdao & Liu, Yufan & Kong, Qingkai & Wang, Jing, 2021. "Extended dissipative sliding mode control for nonlinear networked control systems via event-triggered mechanism with random uncertain measurement," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    16. Zhou, Shuang-Shuang & Jahanshahi, Hadi & Din, Qamar & Bekiros, Stelios & Alcaraz, Raúl & Alassafi, Madini O. & Alsaadi, Fawaz E. & Chu, Yu-Ming, 2021. "Discrete-time macroeconomic system: Bifurcation analysis and synchronization using fuzzy-based activation feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    17. J. Humberto Pérez-Cruz & Pedro A. Tamayo-Meza & Maricela Figueroa & Ramón Silva-Ortigoza & Mario Ponce-Silva & R. Rivera-Blas & Mario Aldape-Pérez, 2019. "Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control," Complexity, Hindawi, vol. 2019, pages 1-10, July.
    18. Chih-Hsueh Lin & Chia-Wei Ho & Guo-Hsin Hu & Baswanth Sreeramaneni & Jun-Juh Yan, 2021. "Secure Data Transmission Based on Adaptive Chattering-Free Sliding Mode Synchronization of Unified Chaotic Systems," Mathematics, MDPI, vol. 9(21), pages 1-11, October.
    19. Sweetha, S. & Sakthivel, R. & Harshavarthini, S., 2021. "Finite-time synchronization of nonlinear fractional chaotic systems with stochastic actuator faults," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    20. Wang, Dongji & Chen, Fei & Meng, Bo & Hu, Xingliu & Wang, Jing, 2021. "Event-based secure H∞ load frequency control for delayed power systems subject to deception attacks," Applied Mathematics and Computation, Elsevier, vol. 394(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922009201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.