IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6628116.html
   My bibliography  Save this article

An Integral Sliding Mode Control of Uncertain Chaotic Systems via Disturbance Observer

Author

Listed:
  • Hua Zhang
  • Heng Liu

Abstract

This paper proposes an integral sliding mode control (ISMC) method of a class of uncertain chaotic systems with saturation inputs. Firstly, fuzzy logic system (FLS) is used to estimate the unknown nonlinear function. Then, a disturbance observer is constructed to estimate a compound disturbance, which contains the external disturbance, the error of saturation input and control output, and the fuzzy estimation error. Subsequently, a proposed integral sliding mode controller can ensure that all signals of the closed-loop system are ultimately bounded, and based on the dynamic system of the integral sliding mode variable itself, the ultimate bound of the tracking error can be estimated. Simulation results show that the proposed ISMC method is more effective than the traditional ISMC method.

Suggested Citation

  • Hua Zhang & Heng Liu, 2021. "An Integral Sliding Mode Control of Uncertain Chaotic Systems via Disturbance Observer," Complexity, Hindawi, vol. 2021, pages 1-11, February.
  • Handle: RePEc:hin:complx:6628116
    DOI: 10.1155/2021/6628116
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6628116.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/6628116.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6628116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih-Hsueh Lin & Chia-Wei Ho & Guo-Hsin Hu & Baswanth Sreeramaneni & Jun-Juh Yan, 2021. "Secure Data Transmission Based on Adaptive Chattering-Free Sliding Mode Synchronization of Unified Chaotic Systems," Mathematics, MDPI, vol. 9(21), pages 1-11, October.
    2. Vadivel, R. & Sabarathinam, S. & Wu, Yongbao & Chaisena, Kantapon & Gunasekaran, Nallappan, 2022. "New results on T–S fuzzy sampled-data stabilization for switched chaotic systems with its applications," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6628116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.