IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v162y2022ics0960077922007020.html
   My bibliography  Save this article

Approximate solutions for the fractional order quadratic Riccati and Bagley-Torvik differential equations

Author

Listed:
  • Fathy, Mohamed
  • Abdelgaber, K.M.

Abstract

The Galerkin method is presented and applied for getting semi-analytical solutions of quadratic Riccati and Bagley-Torvik differential equations in fractional order. New theorems are proved to minimize the generated residual after invoking the Legendre polynomials as a basis in the Galerkin method. The proposed method is compared with other methods by solving some initial value problems of different fractional orders. The comparisons and results are illustrated via tables and figures. It can be concluded that the Legendre-Galerkin method is convenient for these problems due to its efficiency and reliability.

Suggested Citation

  • Fathy, Mohamed & Abdelgaber, K.M., 2022. "Approximate solutions for the fractional order quadratic Riccati and Bagley-Torvik differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922007020
    DOI: 10.1016/j.chaos.2022.112496
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922007020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cang, Jie & Tan, Yue & Xu, Hang & Liao, Shi-Jun, 2009. "Series solutions of non-linear Riccati differential equations with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 1-9.
    2. Odibat, Zaid & Momani, Shaher, 2008. "Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 167-174.
    3. Ge, Zheng-Ming & Ou, Chan-Yi, 2008. "Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 705-717.
    4. Bota, Constantin & Căruntu, Bogdan, 2017. "Analytical approximate solutions for quadratic Riccati differential equation of fractional order using the Polynomial Least Squares Method," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 339-345.
    5. Karaaslan, Mehmet Fatih & Celiker, Fatih & Kurulay, Muhammet, 2016. "Approximate solution of the Bagley–Torvik equation by hybridizable discontinuous Galerkin methods," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 51-58.
    6. Haifa Bin Jebreen & Ioannis Dassios, 2022. "A Biorthogonal Hermite Cubic Spline Galerkin Method for Solving Fractional Riccati Equation," Mathematics, MDPI, vol. 10(9), pages 1-14, April.
    7. Hossein Jafari & Jyoti Geetesh Prasad & Pranay Goswami & Ravi Shanker Dubey, 2021. "Solution Of The Local Fractional Generalized Kdv Equation Using Homotopy Analysis Method," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(05), pages 1-10, August.
    8. Zahra, W.K. & Van Daele, M., 2017. "Discrete spline methods for solving two point fractional Bagley–Torvik equation," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 42-56.
    9. W. K. Zahra & S. M. Elkholy, 2012. "The Use of Cubic Splines in the Numerical Solution of Fractional Differential Equations," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-16, August.
    10. Dubey, Shweta & Chakraverty, S., 2022. "Application of modified extended tanh method in solving fractional order coupled wave equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 509-520.
    11. Mehmet Merdan, 2012. "On the Solutions Fractional Riccati Differential Equation with Modified Riemann-Liouville Derivative," International Journal of Differential Equations, Hindawi, vol. 2012, pages 1-17, May.
    12. Xiaomin Wang, 2014. "A Coiflets-Based Wavelet Laplace Method for Solving the Riccati Differential Equations," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-8, July.
    13. H. Jafari & H. Tajadodi, 2010. "He's Variational Iteration Method for Solving Fractional Riccati Differential Equation," International Journal of Differential Equations, Hindawi, vol. 2010, pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Changqing, 2023. "Improved spectral deferred correction methods for fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Balaji, 2014. "Legendre Wavelet Operational Matrix Method for Solution of Riccati Differential Equation," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-10, June.
    2. Hallaji, Majid & Dideban, Abbas & Khanesar, Mojtaba Ahmadieh & kamyad, Ali vahidyan, 2018. "Optimal synchronization of non-smooth fractional order chaotic systems with uncertainty based on extension of a numerical approach in fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 325-340.
    3. Jim Gatheral & Radoš Radoičić, 2019. "Rational Approximation Of The Rough Heston Solution," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-19, May.
    4. Muhammed I. Syam & Azza Alsuwaidi & Asia Alneyadi & Safa Al Refai & Sondos Al Khaldi, 2018. "An Implicit Hybrid Method for Solving Fractional Bagley-Torvik Boundary Value Problem," Mathematics, MDPI, vol. 6(7), pages 1-11, June.
    5. Nur Amirah Zabidi & Zanariah Abdul Majid & Adem Kilicman & Faranak Rabiei, 2020. "Numerical Solutions of Fractional Differential Equations by Using Fractional Explicit Adams Method," Mathematics, MDPI, vol. 8(10), pages 1-23, October.
    6. Abdelfattah Mustafa & Reda S. Salama & Mokhtar Mohamed, 2023. "Analysis of Generalized Nonlinear Quadrature for Novel Fractional-Order Chaotic Systems Using Sinc Shape Function," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    7. Bota, Constantin & Căruntu, Bogdan, 2017. "Analytical approximate solutions for quadratic Riccati differential equation of fractional order using the Polynomial Least Squares Method," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 339-345.
    8. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    9. Moghaddam, B.P. & Machado, J.A.T. & Behforooz, H., 2017. "An integro quadratic spline approach for a class of variable-order fractional initial value problems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 354-360.
    10. Zahra, W.K. & Elkholy, S.M. & Fahmy, M., 2019. "Rational spline-nonstandard finite difference scheme for the solution of time-fractional Swift–Hohenberg equation," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 372-387.
    11. Zahra, Waheed K. & Abdel-Aty, Mahmoud & Abidou, Diaa, 2020. "A fractional model for estimating the hole geometry in the laser drilling process of thin metal sheets," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    12. Shloof, A.M. & Senu, N. & Ahmadian, A. & Salahshour, Soheil, 2021. "An efficient operation matrix method for solving fractal–fractional differential equations with generalized Caputo-type fractional–fractal derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 415-435.
    13. Abolvafaei, Mahnaz & Ganjefar, Soheil, 2020. "Maximum power extraction from wind energy system using homotopy singular perturbation and fast terminal sliding mode method," Renewable Energy, Elsevier, vol. 148(C), pages 611-626.
    14. M. Motawi Khashan & Rohul Amin & Muhammed I. Syam, 2019. "A New Algorithm for Fractional Riccati Type Differential Equations by Using Haar Wavelet," Mathematics, MDPI, vol. 7(6), pages 1-12, June.
    15. H. X. Mamatova & Z. K. Eshkuvatov & Sh. Ismail, 2023. "A Hybrid Method for All Types of Solutions of the System of Cauchy-Type Singular Integral Equations of the First Kind," Mathematics, MDPI, vol. 11(20), pages 1-30, October.
    16. Muthaiah Subramanian & Jehad Alzabut & Mohamed I. Abbas & Chatthai Thaiprayoon & Weerawat Sudsutad, 2022. "Existence of Solutions for Coupled Higher-Order Fractional Integro-Differential Equations with Nonlocal Integral and Multi-Point Boundary Conditions Depending on Lower-Order Fractional Derivatives and," Mathematics, MDPI, vol. 10(11), pages 1-19, May.
    17. Waseem, Waseem & Sulaiman, M. & Aljohani, Abdulah Jeza, 2020. "Investigation of fractional models of damping material by a neuroevolutionary approach," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Inga Timofejeva & Zenonas Navickas & Tadas Telksnys & Romas Marcinkevicius & Minvydas Ragulskis, 2021. "An Operator-Based Scheme for the Numerical Integration of FDEs," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
    19. Zahra, W.K. & Nasr, M.A. & Van Daele, M., 2019. "Exponentially fitted methods for solving time fractional nonlinear reaction–diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 468-490.
    20. Nazim I Mahmudov & Sameer Bawaneh & Areen Al-Khateeb, 2019. "On a Coupled System of Fractional Differential Equations with Four Point Integral Boundary Conditions," Mathematics, MDPI, vol. 7(3), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922007020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.