IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v161y2022ics096007792200577x.html
   My bibliography  Save this article

Dynamical analysis on a size-structured population model of Daphnia with delayed birth process

Author

Listed:
  • Hu, Dandan
  • Huang, Gang

Abstract

In this paper, we investigate a size-structured population model of Daphnia coupled with an unstructured algal food source. We introduce a delay into the boundary condition of this model, where the delay describes the effect of competition for finding food or resource in short supply juvenile period. Following the semigroup theory, we transform our model into the abstract boundary delay problem and obtain the existence and uniqueness of a positive stationary solution. By means of the spectral analysis and the characteristic equation technique, the instability and linear stability results of stationary solutions are formulated in terms of the basic reproduction number ℛ(F). Some numerical simulation examples are presented to illustrate the feasibility of our main results.

Suggested Citation

  • Hu, Dandan & Huang, Gang, 2022. "Dynamical analysis on a size-structured population model of Daphnia with delayed birth process," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s096007792200577x
    DOI: 10.1016/j.chaos.2022.112367
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792200577X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jinliang & Wang, Jing & Kuniya, Toshikazu, 2019. "Analysis of an age-structured multi-group heroin epidemic model," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 78-100.
    2. Khan, Asaf & Zaman, Gul, 2018. "Global analysis of an age-structured SEIR endemic model," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 154-165.
    3. Wang, Sheng-Fu & Hu, Lin & Nie, Lin-Fei, 2021. "Global dynamics and optimal control of an age-structure Malaria transmission model with vaccination and relapse," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asma Khalil Alkhamis & Manar Hosny, 2023. "A Multi-Objective Simulated Annealing Local Search Algorithm in Memetic CENSGA: Application to Vaccination Allocation for Influenza," Sustainability, MDPI, vol. 15(21), pages 1-37, October.
    2. Fu, Xinjie & Wang, JinRong, 2022. "Dynamic stability and optimal control of SISqIqRS epidemic network," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Wei Wang & Sifen Lu & Haoxiang Tang & Biao Wang & Caiping Sun & Pai Zheng & Yi Bai & Zuhong Lu & Yulin Kang, 2022. "A Scoping Review of Drug Epidemic Models," IJERPH, MDPI, vol. 19(4), pages 1-18, February.
    4. Haoxiang Tang & Mingtao Li & Xiangyu Yan & Zuhong Lu & Zhongwei Jia, 2021. "Modeling the Dynamics of Drug Spreading in China," IJERPH, MDPI, vol. 18(1), pages 1-25, January.
    5. Yin, Qian & Wang, Zhishuang & Xia, Chengyi & Dehmer, Matthias & Emmert-Streib, Frank & Jin, Zhen, 2020. "A novel epidemic model considering demographics and intercity commuting on complex dynamical networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    6. Luo, Yantao & Zhang, Long & Teng, Zhidong & Zheng, Tingting, 2021. "Analysis of a general multi-group reaction–diffusion epidemic model with nonlinear incidence and temporary acquired immunity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 428-455.
    7. Mei, Jun & Wang, Sixin & Xia, Dan & Hu, Junhao, 2022. "Global stability and optimal control analysis of a knowledge transmission model in multilayer networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Yaping Wang & Lin Hu & Linfei Nie, 2022. "Dynamics of a Hybrid HIV/AIDS Model with Age-Structured, Self-Protection and Media Coverage," Mathematics, MDPI, vol. 11(1), pages 1-27, December.
    9. Zizhen Zhang & Fangfang Yang & Wanjun Xia, 2019. "Hopf Bifurcation Analysis of a Synthetic Drug Transmission Model with Time Delays," Complexity, Hindawi, vol. 2019, pages 1-17, November.
    10. Hu Zhang & Anwar Zeb & Aying Wan & Zizhen Zhang, 2022. "Bifurcation Analysis of a Synthetic Drug Transmission Model with Two Time Delays," Mathematics, MDPI, vol. 10(9), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s096007792200577x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.