IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v160y2022ics0960077922004295.html
   My bibliography  Save this article

The effect of time delay in regulatory apoptosis on a tumor model with angiogenesis

Author

Listed:
  • Zhou, Haihua
  • Song, Huijuan
  • Wang, Zejia

Abstract

In this paper, we consider a free boundary problem modeling tumor growth with angiogenesis and time delay in regulatory apoptosis. Two factors are introduced to cause tumor cell death: one is the apoptosis because of exceeding the natural lifespan, the other is the regulatory apoptosis with time delay. The existence, uniqueness and asymptotic behavior of solutions are investigated. The results show that the stabilities of stationary solutions are dramatically affected by such time delay in certain cases, and Hopf bifurcation occurs at some threshold values of time delay. Some numerical simulation results are incorporated supporting the analytical results. The impact of angiogenesis on the Hopf bifurcation is also numerically discussed.

Suggested Citation

  • Zhou, Haihua & Song, Huijuan & Wang, Zejia, 2022. "The effect of time delay in regulatory apoptosis on a tumor model with angiogenesis," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004295
    DOI: 10.1016/j.chaos.2022.112219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922004295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Haihua & Wang, Zejia & Yuan, Daming & Song, Huijuan, 2021. "Hopf bifurcation of a free boundary problem modeling tumor growth with angiogenesis and two time delays," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    2. Xu, Shihe, 2009. "Hopf bifurcation of a free boundary problem modeling tumor growth with two time delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2491-2494.
    3. Rihan, F.A. & Lakshmanan, S. & Maurer, H., 2019. "Optimal control of tumour-immune model with time-delay and immuno-chemotherapy," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 147-165.
    4. Rihan, F.A. & Abdel Rahman, D.H. & Lakshmanan, S. & Alkhajeh, A.S., 2014. "A time delay model of tumour–immune system interactions: Global dynamics, parameter estimation, sensitivity analysis," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 606-623.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Changjin & Farman, Muhammad & Akgül, Ali & Nisar, Kottakkaran Sooppy & Ahmad, Aqeel, 2022. "Modeling and analysis fractal order cancer model with effects of chemotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Fathalla A. Rihan & Chinnathambi Rajivganthi, 2021. "Dynamics of Tumor-Immune System with Random Noise," Mathematics, MDPI, vol. 9(21), pages 1-14, October.
    3. Rihan, F.A. & Velmurugan, G., 2020. "Dynamics of fractional-order delay differential model for tumor-immune system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. Liu, Xiangdong & Li, Qingze & Pan, Jianxin, 2018. "A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 162-176.
    5. Abraham J. Arenas & Gilberto González-Parra & Jhon J. Naranjo & Myladis Cogollo & Nicolás De La Espriella, 2021. "Mathematical Analysis and Numerical Solution of a Model of HIV with a Discrete Time Delay," Mathematics, MDPI, vol. 9(3), pages 1-21, January.
    6. Rihan, F.A. & Lakshmanan, S. & Maurer, H., 2019. "Optimal control of tumour-immune model with time-delay and immuno-chemotherapy," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 147-165.
    7. Zhao, Zhong & Pang, Liuyong & Li, Qiuying, 2021. "Analysis of a hybrid impulsive tumor-immune model with immunotherapy and chemotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    8. Ruiqing Shi & Ting Lu & Cuihong Wang, 2019. "Dynamic Analysis of a Fractional-Order Model for Hepatitis B Virus with Holling II Functional Response," Complexity, Hindawi, vol. 2019, pages 1-13, August.
    9. George E. Chatzarakis & Tongxing Li, 2018. "Oscillation Criteria for Delay and Advanced Differential Equations with Nonmonotone Arguments," Complexity, Hindawi, vol. 2018, pages 1-18, April.
    10. Zhou, Haihua & Wang, Zejia & Yuan, Daming & Song, Huijuan, 2021. "Hopf bifurcation of a free boundary problem modeling tumor growth with angiogenesis and two time delays," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    11. Dzyubak, Larysa & Dzyubak, Oleksandr & Awrejcewicz, Jan, 2023. "Nonlinear multiscale diffusion cancer invasion model with memory of states," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    12. R. Rakkiyappan & V. Preethi Latha & Fathalla A. Rihan, 2019. "A Fractional-Order Model for Zika Virus Infection with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    13. Yuan, Yiran & Li, Ning, 2022. "Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    14. Wang, Jingnan & Shi, Hongbin & Xu, Li & Zang, Lu, 2022. "Hopf bifurcation and chaos of tumor-Lymphatic model with two time delays," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    15. Ghanizadeh, Mojtaba & Shariatpanahi, Seyed Peyman & Goliaei, Bahram & Rüegg, Curzio, 2021. "Mathematical modeling approach of cancer immunoediting reveals new insights in targeted-therapy and timing plan of cancer treatment," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    17. Shyam Sundar Santra & Rami Ahmad El-Nabulsi & Khaled Mohamed Khedher, 2021. "Oscillation of Second-Order Differential Equations with Multiple and Mixed Delays under a Canonical Operator," Mathematics, MDPI, vol. 9(12), pages 1-9, June.
    18. Das, Parthasakha & Das, Samhita & Upadhyay, Ranjit Kumar & Das, Pritha, 2020. "Optimal treatment strategies for delayed cancer-immune system with multiple therapeutic approach," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    19. F. A. Rihan & C. Tunc & S. H. Saker & S. Lakshmanan & R. Rakkiyappan, 2018. "Applications of Delay Differential Equations in Biological Systems," Complexity, Hindawi, vol. 2018, pages 1-3, September.
    20. Das, Parthasakha & Das, Samhita & Das, Pritha & Rihan, Fathalla A. & Uzuntarla, Muhammet & Ghosh, Dibakar, 2021. "Optimal control strategy for cancer remission using combinatorial therapy: A mathematical model-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.