IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v157y2022ics0960077922001291.html
   My bibliography  Save this article

Deterministic coherence resonance analysis of coupled chaotic oscillators: fractional approach

Author

Listed:
  • Gilardi-Velázquez, H.E.
  • Echenausía-Monroy, J.L.
  • Jaimes-Reátegui, R.
  • García-López, J.H.
  • Campos, Eric
  • Huerta-Cuellar, G.

Abstract

Recently, the stabilization of chaos by chaos has attracted the attention of researchers. A small deviation between the natural frequencies of unidirectionally coupled chaotic oscillators can cause the emerge of a coherence resonance in the slave oscillator for a given coupling strength. In this work, we investigate the phenomenon of coherence resonance for a coupled Rössler system under the influence of fractional operators in the frequency response of the slave oscillator. Based on the analysis of the fractional Rössler system, we determine a range of fractional orders in which the system retains its instability, and an analysis of the frequency response of the system to changes in natural frequency is developed. Finally, the frequency response of the slave system to changes in the fractional derivative order, the natural frequency of the master system, and the coupling strength is analyzed, and how these changes promote the occurrence of coherence resonance is examined.

Suggested Citation

  • Gilardi-Velázquez, H.E. & Echenausía-Monroy, J.L. & Jaimes-Reátegui, R. & García-López, J.H. & Campos, Eric & Huerta-Cuellar, G., 2022. "Deterministic coherence resonance analysis of coupled chaotic oscillators: fractional approach," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001291
    DOI: 10.1016/j.chaos.2022.111919
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922001291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chunguang & Chen, Guanrong, 2004. "Chaos and hyperchaos in the fractional-order Rössler equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 55-61.
    2. Zhang, Weiwei & Zhou, Shangbo & Li, Hua & Zhu, Hao, 2009. "Chaos in a fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1684-1691.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Echenausía-Monroy, J.L. & Gilardi-Velázquez, H.E. & Wang, Ning & Jaimes-Reátegui, R. & García-López, J.H. & Huerta-Cuellar, G., 2022. "Multistability route in a PWL multi-scroll system through fractional-order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Emanuel Guariglia & Rodrigo C. Guido & Gabriel J. P. Dalalana, 2023. "From Wavelet Analysis to Fractional Calculus: A Review," Mathematics, MDPI, vol. 11(7), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    3. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.
    4. Zambrano-Serrano, Ernesto & Bekiros, Stelios & Platas-Garza, Miguel A. & Posadas-Castillo, Cornelio & Agarwal, Praveen & Jahanshahi, Hadi & Aly, Ayman A., 2021. "On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    5. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    6. Wang, Fei & Yang, Yongqing & Hu, Manfeng & Xu, Xianyun, 2015. "Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 134-143.
    7. Soliman, Nancy S. & Tolba, Mohammed F. & Said, Lobna A. & Madian, Ahmed H. & Radwan, Ahmed G., 2019. "Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 292-307.
    8. Cruz-Victoria, Juan C. & Martínez-Guerra, Rafael & Pérez-Pinacho, Claudia A. & Gómez-Cortés, Gian Carlo, 2015. "Synchronization of nonlinear fractional order systems by means of PIrα reduced order observer," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 224-231.
    9. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    10. Zheng, Yongai & Ji, Zhilin, 2016. "Predictive control of fractional-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 307-313.
    11. Gao, Xin & Yu, Juebang, 2005. "Synchronization of two coupled fractional-order chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 141-145.
    12. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou & Chen, Wen-Chin & Lin, Kuang-Tai & Kang, Yuan, 2008. "Chaos in the Newton–Leipnik system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 98-103.
    13. Peng, Guojun & Jiang, Yaolin & Chen, Fang, 2008. "Generalized projective synchronization of fractional order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3738-3746.
    14. Petráš, Ivo, 2008. "A note on the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 140-147.
    15. Li, Zengshan & Chen, Diyi & Ma, Mengmeng & Zhang, Xinguang & Wu, Yonghong, 2017. "Feigenbaum's constants in reverse bifurcation of fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 116-123.
    16. Silva-Juárez, Alejandro & Tlelo-Cuautle, Esteban & de la Fraga, Luis Gerardo & Li, Rui, 2021. "Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    17. Khodadadi, Vahid & Nowshiravan Rahatabad, Fereidoun & Sheikhani, Ali & Jafarnia Dabanloo, Nader, 2023. "Nonlinear analysis of biceps surface EMG signals for chaotic approaches," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    18. Xu, Fei & Lai, Yongzeng & Shu, Xiao-Bao, 2018. "Chaos in integer order and fractional order financial systems and their synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 125-136.
    19. Chen, Wei-Ching, 2008. "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1305-1314.
    20. Ge, Zheng-Ming & Ou, Chan-Yi, 2007. "Chaos in a fractional order modified Duffing system," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 262-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.