IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v155y2022ics0960077921010067.html
   My bibliography  Save this article

Localized nonlinear waves on spatio-temporally controllable backgrounds for a (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq model in water waves

Author

Listed:
  • Singh, Sudhir
  • Sakkaravarthi, K.
  • Murugesan, K.

Abstract

Physics of nonlinear waves on variable backgrounds and the relevant mathematical analysis continues to be the challenging aspect of the study. In this work, we consider a (3+1)-dimensional nonlinear model describing the dynamics of water waves and construct nonlinear wave solutions on spatio-temporally controllable backgrounds for the first time by using a simple mathematical tool auto-Bäcklund transformation. Mainly, we unravel physically interesting features to control and manipulate the dynamics of nonlinear waves through the background. Adapting an exponential function and general polynomial of degree two as initial seed solutions, we construct single kink-soliton and rogue wave, respectively. We choose arbitrary periodic, localized and combined wave backgrounds by incorporating Jacobi elliptic functions and investigate the modulation of these two nonlinear waves with a clear analysis and graphical demonstrations. The solutions derived in this work give us sufficient freedom to generate exotic nonlinear coherent structures on variable backgrounds and open up an interesting direction to explore the dynamics of various other nonlinear waves propagating through inhomogeneous media.

Suggested Citation

  • Singh, Sudhir & Sakkaravarthi, K. & Murugesan, K., 2022. "Localized nonlinear waves on spatio-temporally controllable backgrounds for a (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq model in water waves," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010067
    DOI: 10.1016/j.chaos.2021.111652
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921010067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111652?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Xia-Xia & Tian, Bo & Qu, Qi-Xing & Yuan, Yu-Qiang & Zhao, Xue-Hui, 2020. "Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Gao, Xin-Yi & Guo, Yong-Jiang & Shan, Wen-Rui, 2020. "Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Ding, Cui-Cui & Gao, Yi-Tian & Li, Liu-Qing, 2019. "Breathers and rogue waves on the periodic background for the Gerdjikov-Ivanov equation for the Alfvén waves in an astrophysical plasma," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 259-265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Sudhir & Sakkaravarthi, K. & Murugesan, K., 2023. "Lump and soliton on certain spatially-varying backgrounds for an integrable (3+1) dimensional fifth-order nonlinear oceanic wave model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Yunyun & Ji, Ting & Geng, Xianguo, 2021. "Coupled derivative nonlinear Schrödinger III equation: Darboux transformation and higher-order rogue waves in a two-mode nonlinear fiber," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    2. Shahu, Chiranjeev K. & Dwivedi, Sharad & Dubey, Shruti, 2022. "Curved domain walls in the ferromagnetic nanostructures with Rashba and nonlinear dissipative effects," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    3. Xie, Yingying & Li, Lingfei, 2022. "Multiple-order breathers for a generalized (3+1)-dimensional Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation near the offshore structure," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 19-31.
    4. Wang, Pan & Ma, Tian-Ping & Qi, Feng-Hua, 2021. "Analytical solutions for the coupled Hirota equations in the firebringent fiber," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    5. Yang, Dan-Yu & Tian, Bo & Qu, Qi-Xing & Zhang, Chen-Rong & Chen, Su-Su & Wei, Cheng-Cheng, 2021. "Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Bakıcıerler, Gizel & Alfaqeih, Suliman & Mısırlı, Emine, 2021. "Analytic solutions of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    7. Nikolay A. Kudryashov & Sofia F. Lavrova & Daniil R. Nifontov, 2023. "Bifurcations of Phase Portraits, Exact Solutions and Conservation Laws of the Generalized Gerdjikov–Ivanov Model," Mathematics, MDPI, vol. 11(23), pages 1-20, November.
    8. El-Tantawy, S.A. & Alharbey, R.A. & Salas, Alvaro H., 2022. "Novel approximate analytical and numerical cylindrical rogue wave and breathers solutions: An application to electronegative plasma," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Chen, Su-Su & Tian, Bo & Qu, Qi-Xing & Li, He & Sun, Yan & Du, Xia-Xia, 2021. "Alfvén solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrödinger equation in an inhomogeneous plasma," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    10. Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Exact Solutions and Conserved Vectors of the Two-Dimensional Generalized Shallow Water Wave Equation," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
    11. Tanwar, Dig Vijay, 2022. "Lie symmetry reductions and generalized exact solutions of Date–Jimbo–Kashiwara–Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Sil, Subhankar & Raja Sekhar, T. & Zeidan, Dia, 2020. "Nonlocal conservation laws, nonlocal symmetries and exact solutions of an integrable soliton equation," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.