IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921006937.html
   My bibliography  Save this article

Chaos-induced Set–Reset latch operation

Author

Listed:
  • Yao, Yuangen
  • Ma, Jun
  • Gui, Rong
  • Cheng, Guanghui

Abstract

The phenomena of logical chaotic resonance (LCR) was demonstrated recently, namely, a chaos-driven bistable system can operate robustly as a specific logic gate in an optimal range of the intensity of chaotic driving force. Here we explore the possibility that let a chaos-driven bistable system operates directly as a latch (i.e. a basic building block of computers for storing information) by realizing chaos-induced Set–Reset latch operation. Numerical results show that reliable Set–Reset latch operation indeed exists in the chaos-driven bistable system if the intensity k of chaotic driving force is in an optimal range. Therefore, it is possible to realize chaos-assisted memory device according to LCR. Furthermore, the enhancement in broadening the optimal window of the intensity k, and in improving the response speed of the system can be implemented by introducing periodic driving force into the chaos-driven system. These results are further corroborated by circuit experiments.

Suggested Citation

  • Yao, Yuangen & Ma, Jun & Gui, Rong & Cheng, Guanghui, 2021. "Chaos-induced Set–Reset latch operation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921006937
    DOI: 10.1016/j.chaos.2021.111339
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921006937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuangen Yao & Wei Cao & Qiming Pei & Chengzhang Ma & Ming Yi, 2018. "Breakup of Spiral Wave and Order-Disorder Spatial Pattern Transition Induced by Spatially Uniform Cross-Correlated Sine-Wiener Noises in a Regular Network of Hodgkin-Huxley Neurons," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    2. Yuangen Yao & Bowen Gong & Daxiang Lu & Rong Gui, 2020. "Weak Quasiperiodic Signal Propagation through Multilayer Feed-Forward Hodgkin–Huxley Neuronal Network," Complexity, Hindawi, vol. 2020, pages 1-9, July.
    3. Gui, Rong & Wang, Yue & Yao, Yuangen & Cheng, Guanghui, 2020. "Enhanced logical vibrational resonance in a two-well potential system," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Gui, Rong & Li, Jiaxin & Yao, Yuangen & Cheng, Guanghui, 2021. "Effect of time-delayed feedback in a bistable system inferred by logic operation," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    5. Yao, Yuangen & Ma, Chengzhang & Wang, Canjun & Yi, Ming & Gui, Rong, 2018. "Detection of sub-threshold periodic signal by multiplicative and additive cross-correlated sine-Wiener noises in the FitzHugh–Nagumo neuron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1247-1256.
    6. Nan Wang & Aiguo Song & Biao Yang, 2017. "The effect of time-delayed feedback on logical stochastic resonance," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(6), pages 1-5, June.
    7. Cheng, Guanghui & Liu, Weidan & Gui, Rong & Yao, Yuangen, 2020. "Sine-Wiener bounded noise-induced logical stochastic resonance in a two-well potential system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Yuangen Yao & Lijian Yang & Canjun Wang & Quan Liu & Rong Gui & Juan Xiong & Ming Yi, 2018. "Subthreshold Periodic Signal Detection by Bounded Noise-Induced Resonance in the FitzHugh–Nagumo Neuron," Complexity, Hindawi, vol. 2018, pages 1-10, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Wang, Xueqin & Yu, Dong & Li, Tianyu & Jia, Ya, 2023. "Logistic stochastic resonance in the Hodgkin–Huxley neuronal system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Guanghui & Liu, Weidan & Gui, Rong & Yao, Yuangen, 2020. "Sine-Wiener bounded noise-induced logical stochastic resonance in a two-well potential system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Gui, Rong & Li, Jiaxin & Yao, Yuangen & Cheng, Guanghui, 2021. "Effect of time-delayed feedback in a bistable system inferred by logic operation," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Cheng, Guanghui & Gui, Rong & Yao, Yuangen & Yi, Ming, 2019. "Enhancement of temporal regularity and degradation of spatial synchronization induced by cross-correlated sine-Wiener noises in regular and small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 361-369.
    5. Cheng, Guanghui & Li, Dan & Yao, Yuangen & Gui, Rong, 2023. "Multi-scroll chaotic attractors with multi-wing via oscillatory potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Ge, Mengyan & Jia, Ya & Xu, Ying & Lu, Lulu & Wang, Huiwen & Zhao, Yunjie, 2019. "Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 136-145.
    7. Yu, Dong & Lu, Lulu & Wang, Guowei & Yang, Lijian & Jia, Ya, 2021. "Synchronization mode transition induced by bounded noise in multiple time-delays coupled FitzHugh–Nagumo model," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    8. Xiao, Fangli & Fu, Ziying & Jia, Ya & Yang, Lijian, 2023. "Resonance effects in neuronal-astrocyte model with ion channel blockage," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    9. Gui, Rong & Wang, Yue & Yao, Yuangen & Cheng, Guanghui, 2020. "Enhanced logical vibrational resonance in a two-well potential system," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    10. Chao Zhang & Haoran Duan & Yu Xue & Biao Zhang & Bin Fan & Jianguo Wang & Fengshou Gu, 2020. "The Enhancement of Weak Bearing Fault Signatures by Stochastic Resonance with a Novel Potential Function," Energies, MDPI, vol. 13(23), pages 1-15, December.
    11. Usama, B.I. & Morfu, S. & Marquie, P., 2021. "Vibrational resonance and ghost-vibrational resonance occurrence in Chua’s circuit models with specific nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    12. Zhang, Jingyu & Li, Xuefeng & Li, Renfu & Dai, Lu & Wang, Wei & Yang, Kai, 2021. "Internal resonance of a two-degree-of-freedom tuned bistable electromagnetic actuator," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    13. Lu, Lulu & Ge, Mengyan & Xu, Ying & Jia, Ya, 2019. "Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh–Nagumo model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    14. Guo, Yongfeng & Wang, Linjie & Wei, Fang & Tan, Jianguo, 2019. "Dynamical behavior of simplified FitzHugh-Nagumo neural system driven by Lévy noise and Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 118-126.
    15. Bobryk, R.V., 2021. "Stability analysis of a SIR epidemic model with random parametric perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    16. Ge, Mengyan & Lu, Lulu & Xu, Ying & Mamatimin, Rozihajim & Pei, Qiming & Jia, Ya, 2020. "Vibrational mono-/bi-resonance and wave propagation in FitzHugh–Nagumo neural systems under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    17. Wang, Guowei & Yu, Dong & Ding, Qianming & Li, Tianyu & Jia, Ya, 2021. "Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    18. Shi, Peiming & Xia, Haifeng & Han, Dongying & Fu, Rongrong & Yuan, Danzhen, 2018. "Stochastic resonance in a time polo-delayed asymmetry bistable system driven by multiplicative white noise and additive color noise," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 8-14.
    19. Jiang, Jiahao & Li, Kaiyuan & Guo, Wei & Du, Luchun, 2021. "Energetic and entropic vibrational resonance," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Wang, Xueqin & Yu, Dong & Li, Tianyu & Jia, Ya, 2023. "Logistic stochastic resonance in the Hodgkin–Huxley neuronal system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921006937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.