IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics0960077920307736.html
   My bibliography  Save this article

Dynamics of an opinion model with threshold-type delay

Author

Listed:
  • Qesmi, Redouane

Abstract

The process of opinion formation rarely boils down to accepting or rejecting the social consensus of others, despite the considerable research (since Sch, 1956 [5]) that has been focused on such situations. In this paper, we propose a mathematical model of threshold-type delay differential equations describing the relationship between two subpopulations with opposite opinions and the opinion spread dynamics. We study the quantitative as well as qualitative properties of our model, and we present results on positivity and boundedness, local stability of equilibria and global stability of the boundary state under certain conditions. Further analysis of the model show that the system exhibits either a forward transcritical or a backward bifurcation. Furthermore, numerical simulations and sensitivity analysis are performed to study the impact of the relevant parameters of the model on the achievement of the consensus.

Suggested Citation

  • Qesmi, Redouane, 2021. "Dynamics of an opinion model with threshold-type delay," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920307736
    DOI: 10.1016/j.chaos.2020.110379
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920307736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nyczka, Piotr & Cisło, Jerzy & Sznajd-Weron, Katarzyna, 2012. "Opinion dynamics as a movement in a bistable potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 317-327.
    2. Dustin L. Arendt & Leslie M. Blaha, 2015. "Opinions, influence, and zealotry: a computational study on stubbornness," Computational and Mathematical Organization Theory, Springer, vol. 21(2), pages 184-209, June.
    3. Wang, Shaoli & Rong, Libin & Wu, Jianhong, 2016. "Bistability and multistability in opinion dynamics models," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 388-395.
    4. Pablo Balenzuela & Juan Pablo Pinasco & Viktoriya Semeshenko, 2015. "The Undecided Have the Key: Interaction-Driven Opinion Dynamics in a Three State Model," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-21, October.
    5. Galam, Serge, 1999. "Application of statistical physics to politics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 132-139.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qesmi, Redouane, 2021. "Hopf bifurcation in an opinion model with state-dependent delay," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    3. Calvelli, Matheus & Crokidakis, Nuno & Penna, Thadeu J.P., 2019. "Phase transitions and universality in the Sznajd model with anticonformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 518-523.
    4. Gimenez, M. Cecilia & Paz García, Ana Pamela & Burgos Paci, Maxi A. & Reinaudi, Luis, 2016. "Range of interaction in an opinion evolution model of ideological self-positioning: Contagion, hesitance and polarization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 320-330.
    5. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    6. Diao, Su-Meng & Liu, Yun & Zeng, Qing-An & Luo, Gui-Xun & Xiong, Fei, 2014. "A novel opinion dynamics model based on expanded observation ranges and individuals’ social influences in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 220-228.
    7. Lipiecki, Arkadiusz & Sznajd-Weron, Katarzyna, 2022. "Polarization in the three-state q-voter model with anticonformity and bounded confidence," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    8. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    9. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    10. Kareeva, Yulia & Sedakov, Artem & Zhen, Mengke, 2023. "Influence in social networks with stubborn agents: From competition to bargaining," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    11. Nizamani, Sarwat & Memon, Nasrullah & Galam, Serge, 2014. "From public outrage to the burst of public violence: An epidemic-like model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 620-630.
    12. Charcon, D.Y. & Monteiro, L.H.A., 2020. "A multi-agent system to predict the outcome of a two-round election," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    13. Monteiro, L.H.A., 2019. "A discrete-time dynamical system with four types of codimension-one bifurcations," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 189-191.
    14. Lucila G Alvarez-Zuzek & Cristian E La Rocca & Federico Vazquez & Lidia A Braunstein, 2016. "Interacting Social Processes on Interconnected Networks," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
    15. Muslim, Roni & Wella, Sasfan A. & Nugraha, Ahmad R.T., 2022. "Phase transition in the majority rule model with the nonconformist agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    16. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    17. Baumann, Fabian & Sokolov, Igor M. & Tyloo, Melvyn, 2020. "A Laplacian approach to stubborn agents and their role in opinion formation on influence networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    18. Lachowicz, Mirosław & Leszczyński, Henryk & Topolski, Krzysztof A., 2019. "Self-organization with small range interactions: Equilibria and creation of bipolarity," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 156-166.
    19. Bartłomiej Nowak & Katarzyna Sznajd-Weron, 2019. "Homogeneous Symmetrical Threshold Model with Nonconformity: Independence versus Anticonformity," Complexity, Hindawi, vol. 2019, pages 1-14, April.
    20. Takano, Masanori & Nakazato, Kenichi & Taka, Fumiaki, 2023. "Dynamics of discrimination and prejudice via two types of social contagion," Applied Mathematics and Computation, Elsevier, vol. 448(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920307736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.