IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v135y2020ics0960077920301727.html
   My bibliography  Save this article

Emergence of order in dynamical phases in coupled fractional gauss map

Author

Listed:
  • Pakhare, Sumit S.
  • Daftardar-Gejji, Varsha
  • Badwaik, Dilip S.
  • Deshpande, Amey
  • Gade, Prashant M.

Abstract

Dynamical behaviour of discrete dynamical systems has been investigated extensively in the past few decades. However, in several applications, long term memory plays an important role in the evolution of dynamical variables. The definition of discrete maps has recently been extended to fractional maps to model such situations. We extend this definition to a spatiotemporal system. We define a coupled map lattice on different topologies, namely, one-dimensional coupled map lattice, globally coupled system and small-world network. The spatiotemporal patterns in the fractional system are more ordered. In particular, synchronization is observed over a large parameter region. For integer order coupled map lattice in one dimension, synchronized periodic states with a period greater than one are not obtained. However, we observe synchronized periodic states with period-3 or period-6 in one dimensional coupled fractional maps even for a large lattice. With nonlocal coupling, the synchronization is reached over a larger parameter regime. In all these cases, the standard deviation decays as power-law in time with the power same as fractional-order. The physical significance of such studies is also discussed.

Suggested Citation

  • Pakhare, Sumit S. & Daftardar-Gejji, Varsha & Badwaik, Dilip S. & Deshpande, Amey & Gade, Prashant M., 2020. "Emergence of order in dynamical phases in coupled fractional gauss map," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:chsofr:v:135:y:2020:i:c:s0960077920301727
    DOI: 10.1016/j.chaos.2020.109770
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920301727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sibatov, R.T. & Svetukhin, V.V., 2015. "Fractional kinetics of subdiffusion-limited decomposition of a supersaturated solid solution," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 519-526.
    2. Owolabi, Kolade M., 2016. "Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 89-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhalekar, Sachin & Gade, Prashant M. & Joshi, Divya, 2022. "Stability and dynamics of complex order fractional difference equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owolabi, Kolade M. & Atangana, Abdon, 2018. "Chaotic behaviour in system of noninteger-order ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 362-370.
    2. Owolabi, Kolade M., 2018. "Numerical patterns in reaction–diffusion system with the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 160-169.
    3. Owolabi, Kolade M. & Karaagac, Berat, 2020. "Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 41-49.
    5. Yu, Hao & Wu, Boying & Zhang, Dazhi, 2018. "A generalized Laguerre spectral Petrov–Galerkin method for the time-fractional subdiffusion equation on the semi-infinite domain," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 96-111.
    6. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 111-119.
    7. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2019. "A fractional mathematical model of breast cancer competition model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 38-54.
    8. Zahra, W.K. & Nasr, M.A. & Van Daele, M., 2019. "Exponentially fitted methods for solving time fractional nonlinear reaction–diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 468-490.
    9. Caicedo, Alejandro & Cuevas, Claudio & Mateus, Éder & Viana, Arlúcio, 2021. "Global solutions for a strongly coupled fractional reaction-diffusion system in Marcinkiewicz spaces," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    10. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Computational study of multi-species fractional reaction-diffusion system with ABC operator," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 280-289.
    11. Vyacheslav Svetukhin, 2021. "Nucleation Controlled by Non-Fickian Fractional Diffusion," Mathematics, MDPI, vol. 9(7), pages 1-11, March.
    12. Rayal, Ashish & Ram Verma, Sag, 2020. "Numerical analysis of pantograph differential equation of the stretched type associated with fractal-fractional derivatives via fractional order Legendre wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Owolabi, Kolade M., 2020. "High-dimensional spatial patterns in fractional reaction-diffusion system arising in biology," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    14. Gómez-Aguilar, J.F., 2018. "Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 52-75.
    15. Ávalos-Ruiz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2018. "FPGA implementation and control of chaotic systems involving the variable-order fractional operator with Mittag–Leffler law," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 177-189.
    16. Khan, Hasib & Gómez-Aguilar, J.F. & Khan, Aziz & Khan, Tahir Saeed, 2019. "Stability analysis for fractional order advection–reaction diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 737-751.
    17. Alqhtani, Manal & Owolabi, Kolade M. & Saad, Khaled M., 2022. "Spatiotemporal (target) patterns in sub-diffusive predator-prey system with the Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    18. Alqhtani, Manal & Owolabi, Kolade M. & Saad, Khaled M. & Pindza, Edson, 2022. "Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:135:y:2020:i:c:s0960077920301727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.