IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v135y2020ics096007792030148x.html
   My bibliography  Save this article

Chaos control and solutions of fractional-order Malkus waterwheel model

Author

Listed:
  • Akinlar, Mehmet Ali
  • Tchier, Fairouz
  • Inc, Mustafa

Abstract

Malkus waterwheel model is a Lorenz type chaotic-physical model expressed in terms of a system of nonlinear ordinary differential equations. In this investigation, we consider fractional-order Malkus waterwheel model via Caputo type time derivative and present chaos control, anti-synchronization, numerical solutions of the fractional system. We also associate fractional-order Malkus model with two different optimal control problems. Computational results indicate that this study may serve as a framework for chaotic behavior analysis and approximate solutions of many different parametric systems. The paper may be considered as a novel contribution because optimal control formulations, numerical solutions, stability analysis for fractional-order Malkus model are studied first time in this paper. This research work may be useful for researchers concerning with chaos analysis and approximate solutions of fractional-order chaotic dynamical systems.

Suggested Citation

  • Akinlar, Mehmet Ali & Tchier, Fairouz & Inc, Mustafa, 2020. "Chaos control and solutions of fractional-order Malkus waterwheel model," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:chsofr:v:135:y:2020:i:c:s096007792030148x
    DOI: 10.1016/j.chaos.2020.109746
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792030148X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nosrati, Komeil & Shafiee, Masoud, 2018. "Fractional-order singular logistic map: Stability, bifurcation and chaos analysis," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 224-238.
    2. Jajarmi, Amin & Arshad, Sadia & Baleanu, Dumitru, 2019. "A new fractional modelling and control strategy for the outbreak of dengue fever," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Bahaa, G.M., 2019. "Optimal control problem for variable-order fractional differential systems with time delay involving Atangana–Baleanu derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 129-142.
    4. Bayat, Alireza & Khazaei, Ehsan & Mahdavi, Sadegh, 2019. "Economic-Based Synchronization and Control of New Fractional-Order Chaotic System Based on Lyapunov Theorem," MPRA Paper 95394, University Library of Munich, Germany.
    5. Yan, Jianping & Li, Changpin, 2005. "Generalized projective synchronization of a unified chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 26(4), pages 1119-1124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ávalos-Ruíz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Cortes-Campos, H.M. & Lavín-Delgado, J.E., 2023. "A RGB image encryption technique using chaotic maps of fractional variable-order based on DNA encoding," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Izadbakhsh, Alireza & Nikdel, Nazila, 2021. "Chaos synchronization using differential equations as extended state observer," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Xin, Baogui & Peng, Wei & Kwon, Yekyung, 2020. "A discrete fractional-order Cournot duopoly game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    4. Deepika, S. & Veeresha, P., 2023. "Dynamics of chaotic waterwheel model with the asymmetric flow within the frame of Caputo fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatima, Bibi & Zaman, Gul, 2020. "Co-infection of Middle Eastern respiratory syndrome coronavirus and pulmonary tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
    5. Peng, Guojun & Jiang, Yaolin & Chen, Fang, 2008. "Generalized projective synchronization of fractional order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3738-3746.
    6. Al-Sawalha, Ayman, 2009. "Chaos anti-synchronization of two non-identical chaotic systems with known or fully unknown parameters," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1926-1932.
    7. Nosrati, Komeil & Belikov, Juri & Tepljakov, Aleksei & Petlenkov, Eduard, 2023. "Extended fractional singular kalman filter," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    8. DAŞBAŞI, Bahatdin, 2020. "Stability analysis of the hiv model through incommensurate fractional-order nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    9. Defterli, Ozlem, 2021. "Comparative analysis of fractional order dengue model with temperature effect via singular and non-singular operators," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Saad, Khaled M. & Gómez-Aguilar, J.F. & Almadiy, Abdulrhman A., 2020. "A fractional numerical study on a chronic hepatitis C virus infection model with immune response," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Kachia, Krunal & Solís-Pérez, J.E. & Gómez-Aguilar, J.F., 2020. "Chaos in a three-cell population cancer model with variable-order fractional derivative with power, exponential and Mittag-Leffler memories," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D.G. & Gao, Wei & Yel, Gulnur, 2020. "Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    13. Li, Guo-Hui, 2007. "Generalized projective synchronization between Lorenz system and Chen’s system," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1454-1458.
    14. Shojaeizadeh, T. & Mahmoudi, M. & Darehmiraki, M., 2021. "Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Li, Ruihong & Xu, Wei & Li, Shuang, 2009. "Anti-synchronization on autonomous and non-autonomous chaotic systems via adaptive feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1288-1296.
    16. Vincent, U.E., 2008. "Synchronization of identical and non-identical 4-D chaotic systems using active control," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1065-1075.
    17. Xiao, Lin & Li, Linju & Cao, Penglin & He, Yongjun, 2023. "A fixed-time robust controller based on zeroing neural network for generalized projective synchronization of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    18. Ghanbari, Behzad & Cattani, Carlo, 2020. "On fractional predator and prey models with mutualistic predation including non-local and nonsingular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    19. Area, I. & Nieto, J.J., 2021. "Power series solution of the fractional logistic equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    20. Huang, Lilian & Liu, Jin & Xiang, Jianhong & Zhang, Zefeng & Du, Xiuli, 2022. "A construction method of N-dimensional non-degenerate discrete memristive hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:135:y:2020:i:c:s096007792030148x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.