IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v127y2019icp70-82.html
   My bibliography  Save this article

Coexistence of multiple attractors in the tree dynamics

Author

Listed:
  • Makenne, Y.L.
  • Kengne, R.
  • Pelap, F.B.

Abstract

This paper considers a specific plant (pinus family) and examines its complex behavior under the air flow while checking the real-time dynamics of the proposed analog electronic simulator with an active RC realization. It appears that the system can be chaotic and its dynamics depend on the chosen initial conditions. We show the coexistence of multiple attractors in the system and observe that their occurrence makes its chaotic character less robust. We also establish through the basin of attraction that the region of mixed-mode oscillations can be extended by increasing values of the wind amplitude ratio. Furthermore, the isospike diagram is introduced to instantly inform how the dynamics of the plant moves from periodic to chaotic motion as the main parameters of the wind augment all together. Our experimental searches yield results that are in perfect agreement with the numerical outcomes established via Matlab and Pspice environments. Those experimental surveys also display the coexistence of asymmetric and symmetric attractors that confirms the complex behavior of the plants subjected to the wind loads.

Suggested Citation

  • Makenne, Y.L. & Kengne, R. & Pelap, F.B., 2019. "Coexistence of multiple attractors in the tree dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 70-82.
  • Handle: RePEc:eee:chsofr:v:127:y:2019:i:c:p:70-82
    DOI: 10.1016/j.chaos.2019.06.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919302413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.06.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bao, B.C. & Bao, H. & Wang, N. & Chen, M. & Xu, Q., 2017. "Hidden extreme multistability in memristive hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 102-111.
    2. Cabeza, Cecilia & Briozzo, Carlos A. & Garcia, Rodrigo & Freire, Joana G. & Marti, Arturo C. & Gallas, Jason A.C., 2013. "Periodicity hubs and wide spirals in a two-component autonomous electronic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 52(C), pages 59-65.
    3. Chen, M. & Feng, Y. & Bao, H. & Bao, B.C. & Yu, Y.J. & Wu, H.G. & Xu, Q., 2018. "State variable mapping method for studying initial-dependent dynamics in memristive hyper-jerk system with line equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 313-324.
    4. Attili, Basem S., 2009. "A direct method for the numerical computation of bifurcation points underlying symmetries," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1545-1551.
    5. Xu, Quan & Lin, Yi & Bao, Bocheng & Chen, Mo, 2016. "Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 186-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuate, Paul Didier Kamdem & Tchendjeu, Achille Ecladore Tchahou & Fotsin, Hilaire, 2020. "A modified Rössler prototype-4 system based on Chua’s diode nonlinearity : Dynamics, multistability, multiscroll generation and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Fu, Shihui & Liu, Yuan, 2020. "Complex dynamical behavior of modified MLC circuit," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yunzhen & Liu, Zhong & Wu, Huagan & Chen, Shengyao & Bao, Bocheng, 2019. "Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 354-363.
    2. Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.
    3. Mo Chen & Yang Feng & Han Bao & Bocheng Bao & Huagan Wu & Quan Xu, 2019. "Hybrid State Variable Incremental Integral for Reconstructing Extreme Multistability in Memristive Jerk System with Cubic Nonlinearity," Complexity, Hindawi, vol. 2019, pages 1-16, June.
    4. Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.
    5. Liang, Bo & Hu, Chenyang & Tian, Zean & Wang, Qiao & Jian, Canling, 2023. "A 3D chaotic system with multi-transient behavior and its application in image encryption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    6. Colin Sokol Kuka & Yihua Hu & Quan Xu & James Chandler & Mohammed Alkahtani, 2021. "A Novel True Random Number Generator in Near Field Communication as Memristive Wireless Power Transmission," J, MDPI, vol. 4(4), pages 1-20, November.
    7. Yunzhen Zhang & Zhong Liu & Mo Chen & Huagan Wu & Shengyao Chen & Bocheng Bao, 2019. "Dimensionality Reduction Reconstitution for Extreme Multistability in Memristor-Based Colpitts System," Complexity, Hindawi, vol. 2019, pages 1-12, November.
    8. Huagan Wu & Han Bao & Quan Xu & Mo Chen, 2019. "Abundant Coexisting Multiple Attractors’ Behaviors in Three-Dimensional Sine Chaotic System," Complexity, Hindawi, vol. 2019, pages 1-11, December.
    9. Bao, B. & Peol, M.A. & Bao, H. & Chen, M. & Li, H. & Chen, B., 2021. "No-argument memristive hyper-jerk system and its coexisting chaotic bubbles boosted by initial conditions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Han Bao & Tao Jiang & Kaibin Chu & Mo Chen & Quan Xu & Bocheng Bao, 2018. "Memristor-Based Canonical Chua’s Circuit: Extreme Multistability in Voltage-Current Domain and Its Controllability in Flux-Charge Domain," Complexity, Hindawi, vol. 2018, pages 1-13, March.
    11. Bao, Bocheng & Zhang, Xi & Bao, Han & Wu, Pingye & Wu, Zhimin & Chen, Mo, 2019. "Dynamical effects of memristive load on peak current mode buck-boost switching converter," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 69-79.
    12. Zhang, Xin & Li, Chunbiao & Chen, Yudi & IU, Herbert H.C. & Lei, Tengfei, 2020. "A memristive chaotic oscillator with controllable amplitude and frequency," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Jeon, Junkee & Kim, Geonwoo, 2019. "An integral equation approach for optimal investment policies with partial reversibility," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 73-78.
    14. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Yan, Dengwei & Wang, Lidan & Duan, Shukai & Chen, Jiaojiao & Chen, Jiahao, 2021. "Chaotic Attractors Generated by a Memristor-Based Chaotic System and Julia Fractal," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    16. Ahmad Taher Azar & Ngo Mouelas Adele & Kammogne Soup Tewa Alain & Romanic Kengne & Fotsin Hilaire Bertrand, 2018. "Multistability Analysis and Function Projective Synchronization in Relay Coupled Oscillators," Complexity, Hindawi, vol. 2018, pages 1-12, January.
    17. Jafari, Sajad & Dehghan, Soroush & Chen, Guanrong & Kingni, Sifeu Takougang & Rajagopal, Karthikeyan, 2018. "Twin birds inside and outside the cage," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 135-140.
    18. Klapcsik, Kálmán & Hegedűs, Ferenc, 2017. "The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 198-208.
    19. Lin, Y. & Liu, W.B. & Bao, H. & Shen, Q., 2020. "Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    20. G. H. Kom & J. Kengne & J. R. Mboupda Pone & G. Kenne & A. B. Tiedeu, 2018. "Asymmetric Double Strange Attractors in a Simple Autonomous Jerk Circuit," Complexity, Hindawi, vol. 2018, pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:127:y:2019:i:c:p:70-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.