IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v122y2019icp111-118.html
   My bibliography  Save this article

Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu

Author

Listed:
  • Qureshi, Sania
  • Yusuf, Abdullahi

Abstract

This research study is conducted with the aim of getting analysis based upon four different types of frequently used models of ordinary differential equations related to the chickenpox outbreak among school children of Schenzen city of China in 2013. In this regard, three new models under kernels of power law type (Caputo), exponentially decaying type kernel (Caputo–Fabrizio), and the Mittag-Leffler type kernel (Atangana–Baleanu in the Caputo sense) have been proposed and deeply investigated to determine the model with highest efficiency rate. Within the proposed models, the dimensions of each differential equation for all state variables and parameters have been balanced by carrying the respective fractional-order parameter on every dimensional quantity involved in the model. The fixed point theory employed in the present study yielded the proof for existence and uniqueness of the solutions of the fractional-order models under investigation. Using true data for 25 weeks, it is found that the model consisting of Mittag-Leffler type non-singular and non-local kernel has highest capability to capture various features of the disease.

Suggested Citation

  • Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
  • Handle: RePEc:eee:chsofr:v:122:y:2019:i:c:p:111-118
    DOI: 10.1016/j.chaos.2019.03.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919300876
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.03.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abu Arqub, Omar & Al-Smadi, Mohammed, 2018. "Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 161-167.
    2. Abdon Atangana & Necdet Bildik, 2013. "Approximate Solution of Tuberculosis Disease Population Dynamics Model," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, June.
    3. Altaf Khan, Muhammad & Ullah, Saif & Farooq, Muhammad, 2018. "A new fractional model for tuberculosis with relapse via Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 227-238.
    4. Jajarmi, Amin & Baleanu, Dumitru, 2018. "A new fractional analysis on the interaction of HIV with CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 221-229.
    5. Arqub, Omar Abu & Maayah, Banan, 2018. "Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 117-124.
    6. Ullah, Saif & Altaf Khan, Muhammad & Farooq, Muhammad, 2018. "A fractional model for the dynamics of TB virus," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 63-71.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Atangana, Abdon & Qureshi, Sania, 2019. "Modeling attractors of chaotic dynamical systems with fractal–fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 320-337.
    3. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    4. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Wang, Wanting & Khan, Muhammad Altaf & Fatmawati, & Kumam, P. & Thounthong, P., 2019. "A comparison study of bank data in fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 369-384.
    6. Qureshi, Sania & Atangana, Abdon, 2020. "Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    7. Abdeljawad, Thabet & Atangana, Abdon & Gómez-Aguilar, J.F. & Jarad, Fahd, 2019. "On a more general fractional integration by parts formulae and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    8. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    9. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    10. Vázquez-Guerrero, P. & Gómez-Aguilar, J.F. & Santamaria, F. & Escobar-Jiménez, R.F., 2019. "Synchronization patterns with strong memory adaptive control in networks of coupled neurons with chimera states dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 167-175.
    11. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    12. Zafar, Zain Ul Abadin & Zaib, Sumera & Hussain, Muhammad Tanveer & Tunç, Cemil & Javeed, Shumaila, 2022. "Analysis and numerical simulation of tuberculosis model using different fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    13. Arqub, Omar Abu & Maayah, Banan, 2019. "Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 394-402.
    14. Berhe, Hailay Weldegiorgis & Qureshi, Sania & Shaikh, Asif Ali, 2020. "Deterministic modeling of dysentery diarrhea epidemic under fractional Caputo differential operator via real statistical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    15. Djennadi, Smina & Shawagfeh, Nabil & Abu Arqub, Omar, 2021. "A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    16. Sania Qureshi & Norodin A. Rangaig & Dumitru Baleanu, 2019. "New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator," Mathematics, MDPI, vol. 7(4), pages 1-14, April.
    17. Al-Smadi, Mohammed & Arqub, Omar Abu & Zeidan, Dia, 2021. "Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    18. Atangana, Abdon & Shafiq, Anum, 2019. "Differential and integral operators with constant fractional order and variable fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 226-243.
    19. Qureshi, Sania & Bonyah, Ebenezer & Shaikh, Asif Ali, 2019. "Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    20. Lu-Chuan Ceng & Qing Yuan, 2019. "Triple Hierarchical Variational Inequalities, Systems of Variational Inequalities, and Fixed Point Problems," Mathematics, MDPI, vol. 7(2), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:122:y:2019:i:c:p:111-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.