IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v121y2019icp92-97.html

The boundary control strategy for a fractional wave equation with external disturbances

Author

Listed:
  • Jiang, Jingfei
  • Guirao, Juan Luis García
  • Chen, Huatao
  • Cao, Dengqing

Abstract

This paper is concerned with the boundary control of the fractional wave equation when the boundary is subject to persistent external disturbances. By developing the sliding mode control approach to infinite-dimensional fractional order systems, the fractional order sliding mode boundary control law is designed for the infinite dimensional setting. Moreover, based on the fractional asymptotical stability theorem, the asymptotical stability for the fractional wave equation under the control strategies proposed is addressed. Finally, numerical examples are provided to illustrate the viability of the theoretical results.

Suggested Citation

  • Jiang, Jingfei & Guirao, Juan Luis García & Chen, Huatao & Cao, Dengqing, 2019. "The boundary control strategy for a fractional wave equation with external disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 92-97.
  • Handle: RePEc:eee:chsofr:v:121:y:2019:i:c:p:92-97
    DOI: 10.1016/j.chaos.2019.01.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919300414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.01.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jingfei Jiang & Dengqing Cao & Huatao Chen & Kun Zhao, 2017. "The vibration transmissibility of a single degree of freedom oscillator with nonlinear fractional order damping," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(11), pages 2379-2393, August.
    2. Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
    3. Fágner Dias Araruna & Enrique Fernández-Cara & Luciano Cipriano Silva, 2018. "Hierarchic Control for the Wave Equation," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 264-288, July.
    4. Dadras, Sara & Momeni, Hamid Reza, 2010. "Control of a fractional-order economical system via sliding mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2434-2442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Rui-Yang & Cheng, Lan & Zhou, Hua-Cheng, 2024. "Sliding mode control for the stabilization of fractional heat equations subject to boundary uncertainty," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Jiaquan Xie & Yongjiang Zheng & Zhongkai Ren & Tao Wang & Guangxian Shen, 2019. "Numerical Vibration Displacement Solutions of Fractional Drawing Self-Excited Vibration Model Based on Fractional Legendre Functions," Complexity, Hindawi, vol. 2019, pages 1-10, December.
    3. Cai, Rui-Yang & Zhou, Hua-Cheng & Kou, Chun-Hai, 2021. "Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jingfei & Chen, Huatao & Guirao, Juan L.G. & Cao, Dengqing, 2019. "Existence of the solution and stability for a class of variable fractional order differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 269-274.
    2. Song Xu & Hui Lv & Heng Liu & Aijing Liu, 2019. "Robust Control of Disturbed Fractional-Order Economical Chaotic Systems with Uncertain Parameters," Complexity, Hindawi, vol. 2019, pages 1-13, October.
    3. Jahanshahi, S. & Babolian, E. & Torres, D.F.M. & Vahidi, A.R., 2017. "A fractional Gauss–Jacobi quadrature rule for approximating fractional integrals and derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 295-304.
    4. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.
    6. Koca, Ilknur, 2018. "Efficient numerical approach for solving fractional partial differential equations with non-singular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 278-286.
    7. Debbouche, Amar & Antonov, Valery, 2017. "Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 140-148.
    8. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 171-179.
    9. Hammad, Hasanen A. & Alshehri, Maryam G., 2024. "Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    10. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2022. "A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Sheikh, Nadeem Ahmad & Ali, Farhad & Khan, Ilyas & Gohar, Madeha, 2018. "A theoretical study on the performance of a solar collector using CeO2 and Al2O3 water based nanofluids with inclined plate: Atangana–Baleanu fractional model," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 135-142.
    12. Aimene, D. & Baleanu, D. & Seba, D., 2019. "Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 51-57.
    13. Hashemi, M.S. & Atangana, A. & Hajikhah, S., 2020. "Solving fractional pantograph delay equations by an effective computational method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 295-305.
    14. Shirkavand, Mehrdad & Pourgholi, Mahdi, 2018. "Robust fixed-time synchronization of fractional order chaotic using free chattering nonsingular adaptive fractional sliding mode controller design," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 135-147.
    15. Hassan, Waqar Ul & Shabbir, Khurram & Zeeshan, Ahmed & Ellahi, Rahmat, 2025. "Regression analysis for thermal transport of fractional-order magnetohydrodynamic Maxwell fluid flow under the influence of chemical reaction using integrated machine learning approach," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    16. Peng, Li & Zhou, Yong & Debbouche, Amar, 2019. "Approximation techniques of optimal control problems for fractional dynamic systems in separable Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 234-241.
    17. Balcı, Ercan & Öztürk, İlhan & Kartal, Senol, 2019. "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 43-51.
    18. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    19. Sun, HongGuang & Hao, Xiaoxiao & Zhang, Yong & Baleanu, Dumitru, 2017. "Relaxation and diffusion models with non-singular kernels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 590-596.
    20. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:121:y:2019:i:c:p:92-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.