IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v105y2017icp77-91.html
   My bibliography  Save this article

Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit

Author

Listed:
  • Njitacke, Z.T.
  • kengne, J.
  • Kengne, L. Kamdjeu

Abstract

This paper focuses on the dynamics of a modified jerk circuit obtained via replacing the diode bridge memristor in the original jerk circuit introduced in [24] with a first-order hybrid diode circuit. Both memristive diode bridge and first order hybrid diode are frequency dependent component even though the later device doesn't has a pinched hysteresis loop. The analysis is carried out in terms of bifurcation diagrams, graph of Lyapunov exponents, phase portraits, Poincaré section, time series and frequency spectra. The results indicate that, the new circuit exhibits rich dynamic behaviors including multiple coexisting self-excited attractors (e.g. coexistence of two, four or six disconnected periodic and chaotic attractors) and antimonotonicity (i.e. concurrent creation and annihilation of periodic orbits) compared to the original memrisitve jerk circuit. Basins of attraction of various coexisting attractors display extremely complex structures thus justifying jumps between coexisting attractors in experiment. Both PSpice simulations and laboratory experimental measurements are carried out to support the theoretical analyses.

Suggested Citation

  • Njitacke, Z.T. & kengne, J. & Kengne, L. Kamdjeu, 2017. "Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 77-91.
  • Handle: RePEc:eee:chsofr:v:105:y:2017:i:c:p:77-91
    DOI: 10.1016/j.chaos.2017.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917304125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, Vivek & Sharma, B.B. & Nath, R., 2017. "Nonlinear unknown input sliding mode observer based chaotic system synchronization and message recovery scheme with uncertainty," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 51-58.
    2. Hanias, M.P. & Giannaris, G. & Spyridakis, A. & Rigas, A., 2006. "Time series analysis in chaotic diode resonator circuit," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 569-573.
    3. Tchitnga, Robert & Fotsin, Hilaire Bertrand & Nana, Bonaventure & Louodop Fotso, Patrick Hervé & Woafo, Paul, 2012. "Hartley’s oscillator: The simplest chaotic two-component circuit," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 306-313.
    4. Njitacke, Z.T. & kengne, J. & Fotsin, H.B. & Negou, A. Nguomkam & Tchiotsop, D., 2016. "Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 180-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    2. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Ningning Yang & Shucan Cheng & Chaojun Wu & Rong Jia & Chongxin Liu, 2019. "Dynamic Behaviors Analysis of a Chaotic Circuit Based on a Novel Fractional-Order Generalized Memristor," Complexity, Hindawi, vol. 2019, pages 1-15, May.
    5. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    6. Kamdjeu Kengne, Léandre & Mboupda Pone, Justin Roger & Fotsin, Hilaire Bertrand, 2021. "On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    7. Ngamsa Tegnitsap, J.V. & Fotsin, H.B. & Megam Ngouonkadi, E.B., 2021. "Magnetic coupling based control of a chaotic circuit: Case of the van der Pol oscillator coupled to a linear circuit," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Sun, Xi & Yan, Shaohui & Zhang, Yuyan & Wang, Ertong & Wang, Qiyu & Gu, Binxian, 2022. "Bursting dynamics and the zero-Hopf bifurcation of simple jerk system," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Negou, A. Nguomkam & kengne, J. & Tchiotsop, D., 2018. "Periodicity, chaos and multiple coexisting attractors in a generalized Moore–Spiegel system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 275-289.
    10. Njitacke, Z.T. & Kengne, J. & Tapche, R. Wafo & Pelap, F.B., 2018. "Uncertain destination dynamics of a novel memristive 4D autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 177-185.
    11. Signing, V.R. Folifack & Kengne, J. & Kana, L.K., 2018. "Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 263-274.
    12. Zhang, Sen & Zheng, Jiahao & Wang, Xiaoping & Zeng, Zhigang, 2021. "A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    13. Zhang, Sen & Zeng, Yicheng, 2019. "A simple Jerk-like system without equilibrium: Asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 25-40.
    14. Bao, B. & Peol, M.A. & Bao, H. & Chen, M. & Li, H. & Chen, B., 2021. "No-argument memristive hyper-jerk system and its coexisting chaotic bubbles boosted by initial conditions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    15. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    16. Wu, H. & Zhou, J. & Chen, M. & Xu, Q. & Bao, B., 2022. "DC-offset induced asymmetry in memristive diode-bridge-based Shinriki oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    17. Rocha, Ronilson & Medrano-T, Rene Orlando, 2022. "Chua circuit based on the exponential characteristics of semiconductor devices," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    2. Kamdjeu Kengne, Léandre & Mboupda Pone, Justin Roger & Fotsin, Hilaire Bertrand, 2021. "On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Njimah, Ouzerou Mouncherou & Ramadoss, Janarthanan & Telem, Adelaide Nicole Kengnou & Kengne, Jacques & Rajagopal, Karthikeyan, 2023. "Coexisting oscillations and four-scroll chaotic attractors in a pair of coupled memristor-based Duffing oscillators: Theoretical analysis and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Kengne, Jacques & Mogue, Ruth Line Tagne & Fozin, Theophile Fonzin & Telem, Adelaide Nicole Kengnou, 2019. "Effects of symmetric and asymmetric nonlinearity on the dynamics of a novel chaotic jerk circuit: Coexisting multiple attractors, period doubling reversals, crisis, and offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 63-84.
    5. Chen, M. & Feng, Y. & Bao, H. & Bao, B.C. & Yu, Y.J. & Wu, H.G. & Xu, Q., 2018. "State variable mapping method for studying initial-dependent dynamics in memristive hyper-jerk system with line equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 313-324.
    6. Wafo Tekam, Raoul Blaise & Kengne, Jacques & Djuidje Kenmoe, Germaine, 2019. "High frequency Colpitts’ oscillator: A simple configuration for chaos generation," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 351-360.
    7. Minati, Ludovico & Innocenti, Giacomo & Mijatovic, Gorana & Ito, Hiroyuki & Frasca, Mattia, 2022. "Mechanisms of chaos generation in an atypical single-transistor oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Tutueva, Aleksandra & Moysis, Lazaros & Rybin, Vyacheslav & Zubarev, Alexander & Volos, Christos & Butusov, Denis, 2022. "Adaptive symmetry control in secure communication systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    9. G. H. Kom & J. Kengne & J. R. Mboupda Pone & G. Kenne & A. B. Tiedeu, 2018. "Asymmetric Double Strange Attractors in a Simple Autonomous Jerk Circuit," Complexity, Hindawi, vol. 2018, pages 1-16, February.
    10. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    11. Bodo, B. & Armand Eyebe Fouda, J.S. & Mvogo, A. & Tagne, S., 2018. "Experimental hysteresis in memristor based Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 190-195.
    12. Jiri Petrzela, 2022. "Chaos in Analog Electronic Circuits: Comprehensive Review, Solved Problems, Open Topics and Small Example," Mathematics, MDPI, vol. 10(21), pages 1-28, November.
    13. Anzo-Hernández, A. & García-Martínez, M. & Campos-Cantón, E. & Ontañón-García, L.J., 2019. "Electronic implementation of a dynamical network with nearly identical hybrid nodes via unstable dissipative systems," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 272-282.
    14. Liang, Bo & Hu, Chenyang & Tian, Zean & Wang, Qiao & Jian, Canling, 2023. "A 3D chaotic system with multi-transient behavior and its application in image encryption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    15. Leutcho, G.D. & Kengne, J. & Kengne, L. Kamdjeu, 2018. "Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 67-87.
    16. Negou, A. Nguomkam & kengne, J. & Tchiotsop, D., 2018. "Periodicity, chaos and multiple coexisting attractors in a generalized Moore–Spiegel system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 275-289.
    17. Nepomuceno, Erivelton G. & Lima, Arthur M. & Arias-García, Janier & Perc, Matjaž & Repnik, Robert, 2019. "Minimal digital chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 62-66.
    18. Akgül, Akif & Rajagopal, Karthikeyan & Durdu, Ali & Pala, Muhammed Ali & Boyraz, Ömer Faruk & Yildiz, Mustafa Zahid, 2021. "A simple fractional-order chaotic system based on memristor and memcapacitor and its synchronization application," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Fudong Li & Jingru Zeng, 2023. "Multi-Scroll Attractor and Multi-Stable Dynamics of a Three-Dimensional Jerk System," Energies, MDPI, vol. 16(5), pages 1-12, March.
    20. Xu, Quan & Tan, Xiao & Zhu, Dong & Bao, Han & Hu, Yihua & Bao, Bocheng, 2020. "Bifurcations to bursting and spiking in the Chay neuron and their validation in a digital circuit," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:105:y:2017:i:c:p:77-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.