IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics0960077921011152.html
   My bibliography  Save this article

Chua circuit based on the exponential characteristics of semiconductor devices

Author

Listed:
  • Rocha, Ronilson
  • Medrano-T, Rene Orlando

Abstract

The use of non-ideal features of semiconductor devices is an interesting option for implementations of nonlinear electronic systems. This paper analyzes the Chua circuit with nonlinearity based on the exponential hyperbolic characteristics of semiconductor devices. The stability analysis using describing functions predicts the dynamics of this nonlinear system, which is corroborated by numerical investigations and experimental results. The dynamic behaviors and bifurcations of this nonlinear system are mapped in parameter space in order to create a base for studies, analyses, and designs. The dynamic behavior of the experimental high speed implementation of this version of Chua circuit differs from the expected dynamics for a conventional Chua circuit due to effects of unmodelled non-idealities of the real semiconductor devices, displaying that new and different dynamics for the Chua circuit can be obtained exploring different nonlinearities.

Suggested Citation

  • Rocha, Ronilson & Medrano-T, Rene Orlando, 2022. "Chua circuit based on the exponential characteristics of semiconductor devices," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077921011152
    DOI: 10.1016/j.chaos.2021.111761
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921011152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Njitacke, Z.T. & kengne, J. & Kengne, L. Kamdjeu, 2017. "Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 77-91.
    2. Singla, Tanu & Sinha, Tushar & Parmananda, P., 2015. "Antiperiodic oscillations in Chua’s circuits using conjugate coupling," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 212-217.
    3. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    4. Wang, Chunni & Liu, Zhilong & Hobiny, Aatef & Xu, Wenkang & Ma, Jun, 2020. "Capturing and shunting energy in chaotic Chua circuit," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Singla, Tanu & Parmananda, P. & Rivera, M., 2018. "Stabilizing antiperiodic oscillations in Chua’s circuit using periodic forcing," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 128-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martini, Davide & Innocenti, Giacomo & Tesi, Alberto, 2022. "Detection of subcritical Hopf and fold bifurcations in an aeroelastic system via the Describing Function method," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Rocha, Ronilson & Medrano-T, Rene Orlando, 2023. "Stability analysis of the Chua’s circuit with generic odd nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhixiang & Zhang, Chun & Ding, Zuqin & Bi, Qinsheng, 2023. "From period-doubling bursting to chaotic–periodic bursting in a modified Chua’s circuit," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    3. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    6. Ngamsa Tegnitsap, J.V. & Fotsin, H.B. & Megam Ngouonkadi, E.B., 2021. "Magnetic coupling based control of a chaotic circuit: Case of the van der Pol oscillator coupled to a linear circuit," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Hamid, Syeda Rabiya & Nazir, Muhammad Shahid & Rehan, Muhammad & ur Rashid, Haroon, 2019. "New results on regional observer-based stabilization for locally Lipchitz nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 173-184.
    8. Zhang, Sen & Zheng, Jiahao & Wang, Xiaoping & Zeng, Zhigang, 2021. "A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Ningning Yang & Shucan Cheng & Chaojun Wu & Rong Jia & Chongxin Liu, 2019. "Dynamic Behaviors Analysis of a Chaotic Circuit Based on a Novel Fractional-Order Generalized Memristor," Complexity, Hindawi, vol. 2019, pages 1-15, May.
    11. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    12. Wu, H. & Zhou, J. & Chen, M. & Xu, Q. & Bao, B., 2022. "DC-offset induced asymmetry in memristive diode-bridge-based Shinriki oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    13. Signing, V.R. Folifack & Kengne, J. & Kana, L.K., 2018. "Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 263-274.
    14. Bao, B. & Peol, M.A. & Bao, H. & Chen, M. & Li, H. & Chen, B., 2021. "No-argument memristive hyper-jerk system and its coexisting chaotic bubbles boosted by initial conditions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    15. Jiri Petrzela, 2022. "Chaos in Analog Electronic Circuits: Comprehensive Review, Solved Problems, Open Topics and Small Example," Mathematics, MDPI, vol. 10(21), pages 1-28, November.
    16. Kamdjeu Kengne, Léandre & Mboupda Pone, Justin Roger & Fotsin, Hilaire Bertrand, 2021. "On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    17. Zhang, Sen & Zeng, Yicheng, 2019. "A simple Jerk-like system without equilibrium: Asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 25-40.
    18. Sun, Xi & Yan, Shaohui & Zhang, Yuyan & Wang, Ertong & Wang, Qiyu & Gu, Binxian, 2022. "Bursting dynamics and the zero-Hopf bifurcation of simple jerk system," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Negou, A. Nguomkam & kengne, J. & Tchiotsop, D., 2018. "Periodicity, chaos and multiple coexisting attractors in a generalized Moore–Spiegel system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 275-289.
    20. Njitacke, Z.T. & Kengne, J. & Tapche, R. Wafo & Pelap, F.B., 2018. "Uncertain destination dynamics of a novel memristive 4D autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 177-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077921011152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.