IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v102y2017icp473-485.html

A variable-order fractional differential equation model of shape memory polymers

Author

Listed:
  • Li, Zheng
  • Wang, Hong
  • Xiao, Rui
  • Yang, Su

Abstract

A shape-memory polymer (SMP) is capable of memorizing its original shape, and can acquire a temporary shape upon deformation and returns to its permanent shape in response to an external stimulus such as a temperature change. SMPs have been widely used industrial and medical applications. Previously, differential equation models were developed to describe SMPs and their applications. However, these models are often of very complicated form, which require accurate numerical simulations.

Suggested Citation

  • Li, Zheng & Wang, Hong & Xiao, Rui & Yang, Su, 2017. "A variable-order fractional differential equation model of shape memory polymers," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 473-485.
  • Handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:473-485
    DOI: 10.1016/j.chaos.2017.04.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917301765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.04.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sun, HongGuang & Chen, Wen & Chen, YangQuan, 2009. "Variable-order fractional differential operators in anomalous diffusion modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4586-4592.
    2. Jianping Liu & Xia Li & Limeng Wu, 2016. "An Operational Matrix Technique for Solving Variable Order Fractional Differential-Integral Equation Based on the Second Kind of Chebyshev Polynomials," Advances in Mathematical Physics, Hindawi, vol. 2016, pages 1-9, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhi-Yong & Liu, Cheng-Bao, 2022. "Leibniz-type rule of variable-order fractional derivative and application to build Lie symmetry framework," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    2. Luo, Bin & Xiao, Yang & Chen, Zhigang & Zhu, Kejun & Lu, Hanjing, 2024. "Emergence of chaos in an electroactive artificial muscle PVC gel under state-varying electromechanical parameters," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    3. Cao, Jiawei & Chen, Yiming & Wang, Yuanhui & Cheng, Gang & Barrière, Thierry, 2020. "Shifted Legendre polynomials algorithm used for the dynamic analysis of PMMA viscoelastic beam with an improved fractional model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Souad Bensid Ahmed & Adel Ouannas & Mohammed Al Horani & Giuseppe Grassi, 2022. "The Discrete Fractional Variable-Order Tinkerbell Map: Chaos, 0–1 Test, and Entropy," Mathematics, MDPI, vol. 10(17), pages 1-13, September.
    2. Wei, Leilei & Li, Wenbo, 2021. "Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo–Fabrizio fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 280-290.
    3. Qu, Hai-Dong & Liu, Xuan & Lu, Xin & ur Rahman, Mati & She, Zi-Hang, 2022. "Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Liu, Lu & Xue, Dingyu & Zhang, Shuo, 2019. "Closed-loop time response analysis of irrational fractional-order systems with numerical Laplace transform technique," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 133-152.
    5. Hasib Khan & Jehad Alzabut & Haseena Gulzar & Osman Tunç & Sandra Pinelas, 2023. "On System of Variable Order Nonlinear p-Laplacian Fractional Differential Equations with Biological Application," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    6. Ganji, R.M. & Jafari, H. & Baleanu, D., 2020. "A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Tabatabaei, S. Sepehr & Talebi, H.A. & Tavakoli, M., 2017. "A novel adaptive order/parameter identification method for variable order systems application in viscoelastic soft tissue modeling," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 447-455.
    8. Hamid, M. & Usman, M. & Haq, R.U. & Wang, W., 2020. "A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    9. Zahra, Waheed K. & Abdel-Aty, Mahmoud & Abidou, Diaa, 2020. "A fractional model for estimating the hole geometry in the laser drilling process of thin metal sheets," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    10. Yin, Deshun & Wang, Yixin & Li, Yanqing & Cheng, Chen, 2013. "Variable-order fractional mean square displacement function with evolution of diffusibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4571-4575.
    11. Ruilian Du & Zongqi Liang, 2017. "Two New Approximations for Variable-Order Fractional Derivatives," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-10, July.
    12. Al-Mdallal, Qasem M. & Abu Omer, Ahmed S., 2018. "Fractional-order Legendre-collocation method for solving fractional initial value problems," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 74-84.
    13. Atangana, Abdon & Shafiq, Anum, 2019. "Differential and integral operators with constant fractional order and variable fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 226-243.
    14. Meng, Ruifan & Yin, Deshun & Yang, Haixia & Xiang, Guangjian, 2020. "Parameter study of variable order fractional model for the strain hardening behavior of glassy polymers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    15. Heydari, M.H. & Avazzadeh, Z. & Mahmoudi, M.R., 2019. "Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable-order fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 105-124.
    16. Ren, Junjie & Lei, Hao & Song, Jie, 2024. "An improved lattice Boltzmann model for variable-order time-fractional generalized Navier-Stokes equations with applications to permeability prediction," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    17. Chang, Ailian & Sun, HongGuang & Zheng, Chunmiao & Lu, Bingqing & Lu, Chengpeng & Ma, Rui & Zhang, Yong, 2018. "A time fractional convection–diffusion equation to model gas transport through heterogeneous soil and gas reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 356-369.
    18. Wu, Fei & Gao, Renbo & Liu, Jie & Li, Cunbao, 2020. "New fractional variable-order creep model with short memory," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    19. Heydari, Mohammad Hossein & Avazzadeh, Zakieh, 2018. "Legendre wavelets optimization method for variable-order fractional Poisson equation," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 180-190.
    20. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:473-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.