IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i8p2605-2614.html
   My bibliography  Save this article

Study of heat transfer between an over-bed oil burner flame and a fluidized bed during start-up: Determination of the flame to bed convection coefficient

Author

Listed:
  • Jain, Vijay
  • Groulx, Dominic
  • Basu, Prabir

Abstract

A study of the heat transfer processes between an over-bed burner flame and a fluidized bed during start-up as been conducted. Owing to the difficulty of estimating the flame to bed convection coefficient in an industrial boiler, convection coefficients were determined using a laboratory bench scale unit. Such convection heat transfer coefficients are obtained for 3 kg, 4 kg and 5.5 kg initial bed inventories by combining measured temperatures and flow rates with a mathematical model representing the complex energy exchange in the system. Results show that the height of the fluidized bed and its distance to the flame are an important factor in the overall heat transfer process, both by convection and radiation. For 5.5 kg, 4 kg and 3 kg initial bed inventories, the convection coefficients obtained, at the end of start-up, are 180 ± 30 W/m2 K, 150 ± 20 W/m2 K and 95 ± 10 W/m2 K respectively. The determined convection coefficients can be utilized in the future as guides in the design of start-up systems for BFB boilers. The energy analysis performed also identified the major sources of heat losses in the bubbling fluidized bed.

Suggested Citation

  • Jain, Vijay & Groulx, Dominic & Basu, Prabir, 2010. "Study of heat transfer between an over-bed oil burner flame and a fluidized bed during start-up: Determination of the flame to bed convection coefficient," Applied Energy, Elsevier, vol. 87(8), pages 2605-2614, August.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:8:p:2605-2614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00039-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Young Doo & Yang, Chang Won & Kim, Beom Jong & Kim, Kwang Su & Lee, Jeung Woo & Moon, Ji Hong & Yang, Won & Yu, Tae U & Lee, Uen Do, 2013. "Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier," Applied Energy, Elsevier, vol. 112(C), pages 414-420.
    2. Okasha, Farouk M., 2016. "Short overview on the jetting-fountain fluidized bed (JFFB) combustor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 674-686.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:8:p:2605-2614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.