IDEAS home Printed from
   My bibliography  Save this article

Closed intercooled regenerator Brayton-cycle with constant-temperature heat-reservoirs


  • Chen, Lingen
  • Wang, Wenhua
  • Sun, Fengrui
  • Wu, Chih


The performance of an irreversible closed intercooled regenerator Brayton-cycle coupled to constant-temperature heat reservoirs is analyzed by using the theory of finite-time thermodynamics (FTT). Analytical formulae for dimensionless power and efficiency are derived. Especially, the intercooling pressure-ratio is optimized for the optimal power and the optimal efficiency, respectively. The effects of component (the intercooler, the regenerator, and the hot- and cold-side heat-exchangers) effectivenesses, the compressor and turbine efficiencies, the heat-reservoir temperature-ratio, and the temperature ratio of the cooling fluid in the intercooler and the cold-side heat reservoir on the optimal power and the corresponding efficiency and corresponding intercooling pressure ratio, as well as the optimal efficiency and the corresponding power and corresponding intercooling pressure-ratio are analyzed by detailed numerical examples.

Suggested Citation

  • Chen, Lingen & Wang, Wenhua & Sun, Fengrui & Wu, Chih, 2004. "Closed intercooled regenerator Brayton-cycle with constant-temperature heat-reservoirs," Applied Energy, Elsevier, vol. 77(4), pages 429-446, April.
  • Handle: RePEc:eee:appene:v:77:y:2004:i:4:p:429-446

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:energy:v:134:y:2017:i:c:p:1013-1028 is not listed on IDEAS
    2. Wang, Wenhua & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Power optimization of an endoreversible closed intercooled regenerated Brayton-cycle coupled to variable-temperature heat-reservoirs," Applied Energy, Elsevier, vol. 82(2), pages 181-195, October.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:77:y:2004:i:4:p:429-446. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.