IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923015118.html
   My bibliography  Save this article

A novel in-depth intelligent evaluation approach for the gas drainage effect from point monitoring to surface to volume

Author

Listed:
  • Tongqiang, Xia
  • Diao, Li
  • Xiaolin, Li
  • Xin, Yan
  • J.G., Wang

Abstract

Developing a comprehensive and intelligent evaluation approach for dynamic gas extraction parameters is especially important for the operation and management of gas drainage in coal mines. However, existing approaches lack an in-depth intelligent evaluation approach for acquiring surface parameters of gas flow and volume characteristic parameters of the entire drainage area from the finite monitoring data. To fill this gap, a novel Field-Zone-Network model as a unique approach were presented to overcome the above-mentioned challenges, with innovative multi-parameter solution and inversion models. It utilized advanced mathematical algorithms for parameter estimation of gas drainage, by integrating the finite monitoring points data of pipe network and physical characteristic parameters of pipe network and coal seam. The model's accuracy and reliability were validated through rigorous comparisons with field data collected from coal mines and numerical simulations conducted in simulated scenarios. It realized the sufficient mining of finite monitoring data from points (monitoring points) to surface (network) to volume (coal seam). Further, the newly comprehensive software was developed to enable real-time monitoring, analysis, and evaluation of gas drainage effect, providing valuable insights for optimizing extraction operations in coal mines. This research contributes to the advancement of gas drainage in coal mines by presenting a novel Field-Zone-Network model and comprehensive software, empowering efficient and intelligent gas extraction operations with enhanced monitoring and evaluation capabilities.

Suggested Citation

  • Tongqiang, Xia & Diao, Li & Xiaolin, Li & Xin, Yan & J.G., Wang, 2024. "A novel in-depth intelligent evaluation approach for the gas drainage effect from point monitoring to surface to volume," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015118
    DOI: 10.1016/j.apenergy.2023.122147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tongqiang Xia & Jianhang Lu & Zilong Li & Hongfei Duan & Hongyun Ren & Zhuangzhuang Zhang & Yantai Zhang, 2022. "Adaptive Control Strategy and Model of Gas-Drainage Parameters in Coal Seam," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    2. Gatnar, Kazimierz & Tor, Andrzej, 2003. "Drainage and economic utilization of methane from coal seams in the Jastrzebie mining-field," Applied Energy, Elsevier, vol. 74(3-4), pages 331-341, March.
    3. Kong, Shengli & Cheng, Yuanping & Ren, Ting & Liu, Hongyong, 2014. "A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief," Applied Energy, Elsevier, vol. 131(C), pages 67-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deyu Qian & Nong Zhang & Dongjiang Pan & Zhengzheng Xie & Hideki Shimada & Yang Wang & Chenghao Zhang & Nianchao Zhang, 2017. "Stability of Deep Underground Openings through Large Fault Zones in Argillaceous Rock," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
    2. Haijun Guo & Zhixiang Cheng & Kai Wang & Baolin Qu & Liang Yuan & Chao Xu, 2020. "Coal permeability evolution characteristics: Analysis under different loading conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 347-363, April.
    3. Haiqing Shuang & Weitao Meng & Yulong Zhai & Peng Xiao & Yu Shi & Yu Tian, 2022. "Application and Optimization of the Parameters of the High-Level Boreholes in Lateral High Drainage Roadway," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    4. Guo, Hongguang & Zhang, Yujie & Zhang, Yiwen & Li, Xingfeng & Li, Zhigang & Liang, Weiguo & Huang, Zaixing & Urynowicz, Michael & Ali, Muhammad Ishtiaq, 2021. "Feasibility study of enhanced biogenic coalbed methane production by super-critical CO2 extraction," Energy, Elsevier, vol. 214(C).
    5. Hao Zhang & Lehua Xu & Mengmeng Yang & Cunbao Deng & Yuanping Cheng, 2022. "Pressure Relief Mechanism and Gas Extraction Method during the Mining of the Steep and Extra-Thick Coal Seam: A Case Study in the Yaojie No. 3 Coal Mine," Energies, MDPI, vol. 15(10), pages 1-17, May.
    6. Kalantari, Hosein & Ali Ghoreishi-Madiseh, Seyed, 2023. "Study of mine exhaust heat recovery with fully-coupled direct capture and indirect delivery systems," Applied Energy, Elsevier, vol. 334(C).
    7. Ting Liu & Baiquan Lin & Quanle Zou & Chuanjie Zhu, 2016. "Microscopic mechanism for enhanced coal bed methane recovery and outburst elimination by hydraulic slotting: A case study in Yangliu mine, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(5), pages 597-614, October.
    8. Li, Q.Y. & Wang, L. & Ju, Y.L., 2011. "Analysis of flammability limits for the liquefaction process of oxygen-bearing coal-bed methane," Applied Energy, Elsevier, vol. 88(9), pages 2934-2939.
    9. Liang Cheng & Zhaolong Ge & Jiufu Chen & Hao Ding & Lishuang Zou & Ke Li, 2018. "A Sequential Approach for Integrated Coal and Gas Mining of Closely-Spaced Outburst Coal Seams: Results from a Case Study Including Mine Safety Improvements and Greenhouse Gas Reductions," Energies, MDPI, vol. 11(11), pages 1-16, November.
    10. Yiming Yang & Ting Ai & Zetian Zhang & Ru Zhang & Li Ren & Jing Xie & Zhaopeng Zhang, 2020. "Acoustic Emission Characteristics of Coal Samples under Different Stress Paths Corresponding to Different Mining Layouts," Energies, MDPI, vol. 13(12), pages 1-13, June.
    11. Chao Xu & Mingyue Cao & Kai Wang & Qiang Fu & Liangliang Qin, 2021. "Mining‐disturbed coal damage and permeability evolution: Model and validation," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(2), pages 210-221, April.
    12. Siwen Zheng & Liang Wang & Dapeng Chen & Yuanyuan Liu & Changbao Jiang, 2024. "Main control factors of coalbed methane occurrence differences in adjacent coal seams - a case study of Luling coal mine, Huaibei Coalfield, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 11183-11207, September.
    13. Kong, Shengli & Cheng, Yuanping & Ren, Ting & Liu, Hongyong, 2014. "A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief," Applied Energy, Elsevier, vol. 131(C), pages 67-78.
    14. José Luis Lorenzo-Bayona & David León & Isabel Amez & Blanca Castells & Ljiljana Medic, 2023. "Experimental Comparison of Functionality between the Main Types of Methane Measurement Sensors in Mines," Energies, MDPI, vol. 16(5), pages 1-24, February.
    15. Fan, Lurong & Wang, Binyu & Song, Xiaoling, 2023. "An authority-enterprise equilibrium differentiated subsidy mechanism for promoting coalbed methane extraction in multiple coal seams," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.